Loading…
Real-time stealth intervention for motor learning using player flow-state
We present a novel approach to real-time adaptation in serious games for at-home motor learning. Our approach assesses and responds to the "flow-state" of players by tracking and classifying facial emotions in real-time using the Kinect camera. Three different approaches for stealth assess...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a novel approach to real-time adaptation in serious games for at-home motor learning. Our approach assesses and responds to the "flow-state" of players by tracking and classifying facial emotions in real-time using the Kinect camera. Three different approaches for stealth assessment and adaptation using performance and flow-state data are defined, along with a case-study evaluation of these approaches based on their effectiveness at maintaining positive affective interaction in a subject. |
---|---|
ISSN: | 2573-3060 |
DOI: | 10.1109/SeGAH.2018.8401360 |