Loading…
Nonlinear Equalizer Based on Neural Networks for PAM-4 Signal Transmission Using DML
Nonlinear distortion from a directly modulated laser (DML) is one of the major limiting factors to enhance the transmission capacity beyond 10 Gb/s for an intensity modulation direct-detection optical access network. In this letter, we propose and demonstrate a low-complexity nonlinear equalizer (NL...
Saved in:
Published in: | IEEE photonics technology letters 2018-08, Vol.30 (15), p.1416-1419 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nonlinear distortion from a directly modulated laser (DML) is one of the major limiting factors to enhance the transmission capacity beyond 10 Gb/s for an intensity modulation direct-detection optical access network. In this letter, we propose and demonstrate a low-complexity nonlinear equalizer (NLE) based on a machine-learning algorithm called artificial neural network (ANN). Experimental results for a DML-based 20-Gb/s signal transmission over an 18-km SMF-28e fiber at 1310-nm employing pulse amplitude modulation (PAM)-4 confirm that the proposed ANN-NLE equalizer can increase the channel capacity and significantly reduce the impact of nonlinear penalties. |
---|---|
ISSN: | 1041-1135 1941-0174 |
DOI: | 10.1109/LPT.2018.2852327 |