Loading…

Improved target tracking algorithm based on Camshift

The accuracy of tracking based on Camshift would decrease due to the similarity between target color and background color or the target is obscured. For the above problems, improved target tracking algorithm based on Camshift is proposed in this paper. The Camshift algorithm is improved by using the...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiu, Chunbo, Su, Xuemiao, Pan, Xiaonan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4454
container_issue
container_start_page 4449
container_title
container_volume
creator Xiu, Chunbo
Su, Xuemiao
Pan, Xiaonan
description The accuracy of tracking based on Camshift would decrease due to the similarity between target color and background color or the target is obscured. For the above problems, improved target tracking algorithm based on Camshift is proposed in this paper. The Camshift algorithm is improved by using the contour features of the target, and Camshift search window is updated according to the contour feature of the target. Thus, interference of background and strong light is weakened. Kalman filtering algorithm is used to predict the motion state of the tracking target, enhancing the efficiency of tracking when the tracking target is obscured. Experiments show that Camshift is combined with the contour feature of target and make the tracking more effectively under the conditions of background. And the Kalman filtering algorithm is used to predict position of the target to make the tracking effectively when the target is obscured.
doi_str_mv 10.1109/CCDC.2018.8407900
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8407900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8407900</ieee_id><sourcerecordid>8407900</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-77a3ad9d521d4ab7fa5c7ad0b70a3031b81f8cb11a4091145d36903d0423ad403</originalsourceid><addsrcrecordid>eNotj81KxDAURqMgODP6AOImL9B6b3PbJEuJfwMDbnQ93DZpJzqdDmkQfHsHnNW3OJwDnxB3CCUi2AfnnlxZAZrSEGgLcCGWWCvTYEVKX4oFWjKFJdLXYjnPXwBNowAWgtbjMU0_wcvMaQhZ5sTddzwMkvfDlGLejbLl-cSng3Q8zrvY5xtx1fN-DrfnXYnPl-cP91Zs3l_X7nFTRNR1LrRmxd76ukJP3Oqe606zh1YDK1DYGuxN1yIygUWk2qvGgvJA1ckjUCtx_9-NIYTtMcWR0-_2_FD9AT2xQ_Y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved target tracking algorithm based on Camshift</title><source>IEEE Xplore All Conference Series</source><creator>Xiu, Chunbo ; Su, Xuemiao ; Pan, Xiaonan</creator><creatorcontrib>Xiu, Chunbo ; Su, Xuemiao ; Pan, Xiaonan</creatorcontrib><description>The accuracy of tracking based on Camshift would decrease due to the similarity between target color and background color or the target is obscured. For the above problems, improved target tracking algorithm based on Camshift is proposed in this paper. The Camshift algorithm is improved by using the contour features of the target, and Camshift search window is updated according to the contour feature of the target. Thus, interference of background and strong light is weakened. Kalman filtering algorithm is used to predict the motion state of the tracking target, enhancing the efficiency of tracking when the tracking target is obscured. Experiments show that Camshift is combined with the contour feature of target and make the tracking more effectively under the conditions of background. And the Kalman filtering algorithm is used to predict position of the target to make the tracking effectively when the target is obscured.</description><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 1538612437</identifier><identifier>EISBN: 9781538612446</identifier><identifier>EISBN: 1538612445</identifier><identifier>EISBN: 9781538612439</identifier><identifier>DOI: 10.1109/CCDC.2018.8407900</identifier><language>eng</language><publisher>IEEE</publisher><subject>Camshift Tracking Algorithm ; Filtering algorithms ; Interference ; Kalman Filtering Algorithm ; Kalman filters ; Mathematical model ; Prediction algorithms ; Target Contour ; Target tracking</subject><ispartof>2018 Chinese Control And Decision Conference (CCDC), 2018, p.4449-4454</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8407900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8407900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiu, Chunbo</creatorcontrib><creatorcontrib>Su, Xuemiao</creatorcontrib><creatorcontrib>Pan, Xiaonan</creatorcontrib><title>Improved target tracking algorithm based on Camshift</title><title>2018 Chinese Control And Decision Conference (CCDC)</title><addtitle>CCDC</addtitle><description>The accuracy of tracking based on Camshift would decrease due to the similarity between target color and background color or the target is obscured. For the above problems, improved target tracking algorithm based on Camshift is proposed in this paper. The Camshift algorithm is improved by using the contour features of the target, and Camshift search window is updated according to the contour feature of the target. Thus, interference of background and strong light is weakened. Kalman filtering algorithm is used to predict the motion state of the tracking target, enhancing the efficiency of tracking when the tracking target is obscured. Experiments show that Camshift is combined with the contour feature of target and make the tracking more effectively under the conditions of background. And the Kalman filtering algorithm is used to predict position of the target to make the tracking effectively when the target is obscured.</description><subject>Camshift Tracking Algorithm</subject><subject>Filtering algorithms</subject><subject>Interference</subject><subject>Kalman Filtering Algorithm</subject><subject>Kalman filters</subject><subject>Mathematical model</subject><subject>Prediction algorithms</subject><subject>Target Contour</subject><subject>Target tracking</subject><issn>1948-9447</issn><isbn>1538612437</isbn><isbn>9781538612446</isbn><isbn>1538612445</isbn><isbn>9781538612439</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KxDAURqMgODP6AOImL9B6b3PbJEuJfwMDbnQ93DZpJzqdDmkQfHsHnNW3OJwDnxB3CCUi2AfnnlxZAZrSEGgLcCGWWCvTYEVKX4oFWjKFJdLXYjnPXwBNowAWgtbjMU0_wcvMaQhZ5sTddzwMkvfDlGLejbLl-cSng3Q8zrvY5xtx1fN-DrfnXYnPl-cP91Zs3l_X7nFTRNR1LrRmxd76ukJP3Oqe606zh1YDK1DYGuxN1yIygUWk2qvGgvJA1ckjUCtx_9-NIYTtMcWR0-_2_FD9AT2xQ_Y</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Xiu, Chunbo</creator><creator>Su, Xuemiao</creator><creator>Pan, Xiaonan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201806</creationdate><title>Improved target tracking algorithm based on Camshift</title><author>Xiu, Chunbo ; Su, Xuemiao ; Pan, Xiaonan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-77a3ad9d521d4ab7fa5c7ad0b70a3031b81f8cb11a4091145d36903d0423ad403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Camshift Tracking Algorithm</topic><topic>Filtering algorithms</topic><topic>Interference</topic><topic>Kalman Filtering Algorithm</topic><topic>Kalman filters</topic><topic>Mathematical model</topic><topic>Prediction algorithms</topic><topic>Target Contour</topic><topic>Target tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiu, Chunbo</creatorcontrib><creatorcontrib>Su, Xuemiao</creatorcontrib><creatorcontrib>Pan, Xiaonan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiu, Chunbo</au><au>Su, Xuemiao</au><au>Pan, Xiaonan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved target tracking algorithm based on Camshift</atitle><btitle>2018 Chinese Control And Decision Conference (CCDC)</btitle><stitle>CCDC</stitle><date>2018-06</date><risdate>2018</risdate><spage>4449</spage><epage>4454</epage><pages>4449-4454</pages><eissn>1948-9447</eissn><eisbn>1538612437</eisbn><eisbn>9781538612446</eisbn><eisbn>1538612445</eisbn><eisbn>9781538612439</eisbn><abstract>The accuracy of tracking based on Camshift would decrease due to the similarity between target color and background color or the target is obscured. For the above problems, improved target tracking algorithm based on Camshift is proposed in this paper. The Camshift algorithm is improved by using the contour features of the target, and Camshift search window is updated according to the contour feature of the target. Thus, interference of background and strong light is weakened. Kalman filtering algorithm is used to predict the motion state of the tracking target, enhancing the efficiency of tracking when the tracking target is obscured. Experiments show that Camshift is combined with the contour feature of target and make the tracking more effectively under the conditions of background. And the Kalman filtering algorithm is used to predict position of the target to make the tracking effectively when the target is obscured.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2018.8407900</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1948-9447
ispartof 2018 Chinese Control And Decision Conference (CCDC), 2018, p.4449-4454
issn 1948-9447
language eng
recordid cdi_ieee_primary_8407900
source IEEE Xplore All Conference Series
subjects Camshift Tracking Algorithm
Filtering algorithms
Interference
Kalman Filtering Algorithm
Kalman filters
Mathematical model
Prediction algorithms
Target Contour
Target tracking
title Improved target tracking algorithm based on Camshift
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20target%20tracking%20algorithm%20based%20on%20Camshift&rft.btitle=2018%20Chinese%20Control%20And%20Decision%20Conference%20(CCDC)&rft.au=Xiu,%20Chunbo&rft.date=2018-06&rft.spage=4449&rft.epage=4454&rft.pages=4449-4454&rft.eissn=1948-9447&rft_id=info:doi/10.1109/CCDC.2018.8407900&rft.eisbn=1538612437&rft.eisbn_list=9781538612446&rft.eisbn_list=1538612445&rft.eisbn_list=9781538612439&rft_dat=%3Cieee_CHZPO%3E8407900%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-77a3ad9d521d4ab7fa5c7ad0b70a3031b81f8cb11a4091145d36903d0423ad403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8407900&rfr_iscdi=true