Loading…
Monte Carlo Methods for the Ferromagnetic Potts Model Using Factor Graph Duality
Normal factor graph duality offers new possibilities for Monte Carlo algorithms in graphical models. Specifically, we consider the problem of estimating the partition function of the ferromagnetic Ising and Potts models by Monte Carlo methods, which are known to work well at high temperatures but to...
Saved in:
Published in: | IEEE transactions on information theory 2018-12, Vol.64 (12), p.7449-7464 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-74a0ada7d07f2730e1c231f857e85d8bd5674d0890e82d66be3b7d9f45045c4a3 |
container_end_page | 7464 |
container_issue | 12 |
container_start_page | 7449 |
container_title | IEEE transactions on information theory |
container_volume | 64 |
creator | Molkaraie, Mehdi Gomez, Vicenc |
description | Normal factor graph duality offers new possibilities for Monte Carlo algorithms in graphical models. Specifically, we consider the problem of estimating the partition function of the ferromagnetic Ising and Potts models by Monte Carlo methods, which are known to work well at high temperatures but to fail at low temperatures. We propose Monte Carlo methods (uniform sampling and importance sampling) in the dual normal factor graph and demonstrate that they behave differently: they work particularly well at low temperatures. By comparing the relative error in estimating the partition function, we show that the proposed importance sampling algorithm significantly outperforms the state-of-the-art deterministic and Monte Carlo methods. For the ferromagnetic Ising model in an external field, we show the equivalence between the valid configurations in the dual normal factor graph and the terms that appear in the high-temperature series expansion of the partition function. Following this result, we discuss connections with Jerrum-Sinclair's polynomial randomized approximation scheme (the subgraphs-world process) for evaluating the partition function of ferromagnetic Ising models. |
doi_str_mv | 10.1109/TIT.2018.2857565 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8413107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8413107</ieee_id><sourcerecordid>2137556760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-74a0ada7d07f2730e1c231f857e85d8bd5674d0890e82d66be3b7d9f45045c4a3</originalsourceid><addsrcrecordid>eNpFUE1PAjEUbIwmIno38dLE82I_t92jQUESiR7w3JT2rSwBim33wL-3BKKHl5fJm5k3GYTuKRlRSpqnxWwxYoTqEdNSyVpeoAGVUlVNLcUlGpByqhoh9DW6SWldoJCUDdDnPOwy4LGNm4DnkFfBJ9yGiPMK8ARiDFv7vYPcOfwZck54Hjxs8Ffqdt94Yl0u1Gm0-xV-6e2my4dbdNXaTYK78x6ir8nrYvxWvX9MZ-Pn98pxpnOlhCXWW-WJapniBKhjnLYlO2jp9dLLWglPdENAM1_XS-BL5ZtWSCKkE5YPET35utQ7E8FBdDabYLt_cBxGFDNcMkZV0TyeNPsYfnpI2axDH3clpmGUK1l-1qSwyNk5hpQitGYfu62NB0OJOXZtStfm2LU5d10kDydJBwB_dC0op0TxX03LeR4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137556760</pqid></control><display><type>article</type><title>Monte Carlo Methods for the Ferromagnetic Potts Model Using Factor Graph Duality</title><source>IEEE Xplore (Online service)</source><creator>Molkaraie, Mehdi ; Gomez, Vicenc</creator><creatorcontrib>Molkaraie, Mehdi ; Gomez, Vicenc</creatorcontrib><description>Normal factor graph duality offers new possibilities for Monte Carlo algorithms in graphical models. Specifically, we consider the problem of estimating the partition function of the ferromagnetic Ising and Potts models by Monte Carlo methods, which are known to work well at high temperatures but to fail at low temperatures. We propose Monte Carlo methods (uniform sampling and importance sampling) in the dual normal factor graph and demonstrate that they behave differently: they work particularly well at low temperatures. By comparing the relative error in estimating the partition function, we show that the proposed importance sampling algorithm significantly outperforms the state-of-the-art deterministic and Monte Carlo methods. For the ferromagnetic Ising model in an external field, we show the equivalence between the valid configurations in the dual normal factor graph and the terms that appear in the high-temperature series expansion of the partition function. Following this result, we discuss connections with Jerrum-Sinclair's polynomial randomized approximation scheme (the subgraphs-world process) for evaluating the partition function of ferromagnetic Ising models.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2018.2857565</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computational modeling ; Computer simulation ; Dual normal factor graph ; Estimation ; Ferromagnetism ; Graph theory ; High temperature ; High-temperature series expansion ; Importance sampling ; Ising model ; Low-temperature regime ; Markov analysis ; Monte Carlo methods ; Monte Carlo simulation ; Normal factor graph ; Numerical models ; Partition function ; Partitioning algorithms ; Partitions ; Partitions (mathematics) ; Polynomials ; Potts model ; Sampling techniques ; Series expansion ; State of the art ; Subgraphs-world process ; Temperature ; Two dimensional displays</subject><ispartof>IEEE transactions on information theory, 2018-12, Vol.64 (12), p.7449-7464</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><rights>2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The final published article can be found at https://dx.doi.org/10.1109/TIT.2018.2857565 info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-74a0ada7d07f2730e1c231f857e85d8bd5674d0890e82d66be3b7d9f45045c4a3</cites><orcidid>0000-0001-9260-5071 ; 0000-0001-5146-7645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8413107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Molkaraie, Mehdi</creatorcontrib><creatorcontrib>Gomez, Vicenc</creatorcontrib><title>Monte Carlo Methods for the Ferromagnetic Potts Model Using Factor Graph Duality</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Normal factor graph duality offers new possibilities for Monte Carlo algorithms in graphical models. Specifically, we consider the problem of estimating the partition function of the ferromagnetic Ising and Potts models by Monte Carlo methods, which are known to work well at high temperatures but to fail at low temperatures. We propose Monte Carlo methods (uniform sampling and importance sampling) in the dual normal factor graph and demonstrate that they behave differently: they work particularly well at low temperatures. By comparing the relative error in estimating the partition function, we show that the proposed importance sampling algorithm significantly outperforms the state-of-the-art deterministic and Monte Carlo methods. For the ferromagnetic Ising model in an external field, we show the equivalence between the valid configurations in the dual normal factor graph and the terms that appear in the high-temperature series expansion of the partition function. Following this result, we discuss connections with Jerrum-Sinclair's polynomial randomized approximation scheme (the subgraphs-world process) for evaluating the partition function of ferromagnetic Ising models.</description><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Dual normal factor graph</subject><subject>Estimation</subject><subject>Ferromagnetism</subject><subject>Graph theory</subject><subject>High temperature</subject><subject>High-temperature series expansion</subject><subject>Importance sampling</subject><subject>Ising model</subject><subject>Low-temperature regime</subject><subject>Markov analysis</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Normal factor graph</subject><subject>Numerical models</subject><subject>Partition function</subject><subject>Partitioning algorithms</subject><subject>Partitions</subject><subject>Partitions (mathematics)</subject><subject>Polynomials</subject><subject>Potts model</subject><subject>Sampling techniques</subject><subject>Series expansion</subject><subject>State of the art</subject><subject>Subgraphs-world process</subject><subject>Temperature</subject><subject>Two dimensional displays</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFUE1PAjEUbIwmIno38dLE82I_t92jQUESiR7w3JT2rSwBim33wL-3BKKHl5fJm5k3GYTuKRlRSpqnxWwxYoTqEdNSyVpeoAGVUlVNLcUlGpByqhoh9DW6SWldoJCUDdDnPOwy4LGNm4DnkFfBJ9yGiPMK8ARiDFv7vYPcOfwZck54Hjxs8Ffqdt94Yl0u1Gm0-xV-6e2my4dbdNXaTYK78x6ir8nrYvxWvX9MZ-Pn98pxpnOlhCXWW-WJapniBKhjnLYlO2jp9dLLWglPdENAM1_XS-BL5ZtWSCKkE5YPET35utQ7E8FBdDabYLt_cBxGFDNcMkZV0TyeNPsYfnpI2axDH3clpmGUK1l-1qSwyNk5hpQitGYfu62NB0OJOXZtStfm2LU5d10kDydJBwB_dC0op0TxX03LeR4</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Molkaraie, Mehdi</creator><creator>Gomez, Vicenc</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0001-9260-5071</orcidid><orcidid>https://orcid.org/0000-0001-5146-7645</orcidid></search><sort><creationdate>20181201</creationdate><title>Monte Carlo Methods for the Ferromagnetic Potts Model Using Factor Graph Duality</title><author>Molkaraie, Mehdi ; Gomez, Vicenc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-74a0ada7d07f2730e1c231f857e85d8bd5674d0890e82d66be3b7d9f45045c4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Dual normal factor graph</topic><topic>Estimation</topic><topic>Ferromagnetism</topic><topic>Graph theory</topic><topic>High temperature</topic><topic>High-temperature series expansion</topic><topic>Importance sampling</topic><topic>Ising model</topic><topic>Low-temperature regime</topic><topic>Markov analysis</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Normal factor graph</topic><topic>Numerical models</topic><topic>Partition function</topic><topic>Partitioning algorithms</topic><topic>Partitions</topic><topic>Partitions (mathematics)</topic><topic>Polynomials</topic><topic>Potts model</topic><topic>Sampling techniques</topic><topic>Series expansion</topic><topic>State of the art</topic><topic>Subgraphs-world process</topic><topic>Temperature</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molkaraie, Mehdi</creatorcontrib><creatorcontrib>Gomez, Vicenc</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molkaraie, Mehdi</au><au>Gomez, Vicenc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo Methods for the Ferromagnetic Potts Model Using Factor Graph Duality</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>64</volume><issue>12</issue><spage>7449</spage><epage>7464</epage><pages>7449-7464</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Normal factor graph duality offers new possibilities for Monte Carlo algorithms in graphical models. Specifically, we consider the problem of estimating the partition function of the ferromagnetic Ising and Potts models by Monte Carlo methods, which are known to work well at high temperatures but to fail at low temperatures. We propose Monte Carlo methods (uniform sampling and importance sampling) in the dual normal factor graph and demonstrate that they behave differently: they work particularly well at low temperatures. By comparing the relative error in estimating the partition function, we show that the proposed importance sampling algorithm significantly outperforms the state-of-the-art deterministic and Monte Carlo methods. For the ferromagnetic Ising model in an external field, we show the equivalence between the valid configurations in the dual normal factor graph and the terms that appear in the high-temperature series expansion of the partition function. Following this result, we discuss connections with Jerrum-Sinclair's polynomial randomized approximation scheme (the subgraphs-world process) for evaluating the partition function of ferromagnetic Ising models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2018.2857565</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9260-5071</orcidid><orcidid>https://orcid.org/0000-0001-5146-7645</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2018-12, Vol.64 (12), p.7449-7464 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_8413107 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Computational modeling Computer simulation Dual normal factor graph Estimation Ferromagnetism Graph theory High temperature High-temperature series expansion Importance sampling Ising model Low-temperature regime Markov analysis Monte Carlo methods Monte Carlo simulation Normal factor graph Numerical models Partition function Partitioning algorithms Partitions Partitions (mathematics) Polynomials Potts model Sampling techniques Series expansion State of the art Subgraphs-world process Temperature Two dimensional displays |
title | Monte Carlo Methods for the Ferromagnetic Potts Model Using Factor Graph Duality |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A12%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20Methods%20for%20the%20Ferromagnetic%20Potts%20Model%20Using%20Factor%20Graph%20Duality&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Molkaraie,%20Mehdi&rft.date=2018-12-01&rft.volume=64&rft.issue=12&rft.spage=7449&rft.epage=7464&rft.pages=7449-7464&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2018.2857565&rft_dat=%3Cproquest_ieee_%3E2137556760%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-74a0ada7d07f2730e1c231f857e85d8bd5674d0890e82d66be3b7d9f45045c4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2137556760&rft_id=info:pmid/&rft_ieee_id=8413107&rfr_iscdi=true |