Loading…

HDM-MC in-Action: A Framework for Big Data Analytics across Multiple Clusters

Big data are increasingly collected and stored in a highly distributed infrastructures due to the development of several emerging technologies including sensor network, cloud computing, IoT and mobile computing among many other emerging technologies. In practice, the majority of existing big data pr...

Full description

Saved in:
Bibliographic Details
Main Authors: Wu, Dongyao, Sakr, Sherif, Zhu, Liming, Lee, Sung, Wu, Huijun
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1550
container_issue
container_start_page 1547
container_title
container_volume
creator Wu, Dongyao
Sakr, Sherif
Zhu, Liming
Lee, Sung
Wu, Huijun
description Big data are increasingly collected and stored in a highly distributed infrastructures due to the development of several emerging technologies including sensor network, cloud computing, IoT and mobile computing among many other emerging technologies. In practice, the majority of existing big data processing frameworks (e.g., Hadoop, Spark, Flink) are designed based on the single-cluster setup with the assumptions of centralized management and homogeneous connectivity which makes them sub-optimal and sometimes infeasible to be applied for scenarios that require implementing data analytics jobs on highly distributed data sets (across racks, data centers or multi organizations). We demonstrate HDM-MC, a big data processing framework that is designed to enable the capability of performing large scale data analytics across multi-clusters with minimum extra overhead due to additional scheduling requirements. We describe the architecture and realization of the system using a step-by-step example scenario.
doi_str_mv 10.1109/ICDCS.2018.00165
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8416428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8416428</ieee_id><sourcerecordid>8416428</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-736463b4f980d20013a1df02a52a97c2e2f187b478be34fbf21b5ca97c9c5bd43</originalsourceid><addsrcrecordid>eNotj09LwzAchqMgOOfugpd8gdb88r_earu5wYoH9TzSNpFo144kQ_btnejpPTzw8LwI3QHJAUjxsKnq6jWnBHROCEhxgW5AMC2lVqAv0YwKJTLNAa7RIsZPQgiVmhMlZqhZ103WVNiPWdklP42PuMSrYPb2ewpf2E0BP_kPXJtkcDma4ZR8F7HpwhQjbo5D8ofB4mo4xmRDvEVXzgzRLv53jt5Xy7dqnW1fnjdVuc08KJEyxSSXrOWu0KSn52RmoHeEGkFNoTpqqQOtWq50axl3raPQiu4XFZ1oe87m6P7P6621u0PwexNOu_NDyalmP6fsTE4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>HDM-MC in-Action: A Framework for Big Data Analytics across Multiple Clusters</title><source>IEEE Xplore All Conference Series</source><creator>Wu, Dongyao ; Sakr, Sherif ; Zhu, Liming ; Lee, Sung ; Wu, Huijun</creator><creatorcontrib>Wu, Dongyao ; Sakr, Sherif ; Zhu, Liming ; Lee, Sung ; Wu, Huijun</creatorcontrib><description>Big data are increasingly collected and stored in a highly distributed infrastructures due to the development of several emerging technologies including sensor network, cloud computing, IoT and mobile computing among many other emerging technologies. In practice, the majority of existing big data processing frameworks (e.g., Hadoop, Spark, Flink) are designed based on the single-cluster setup with the assumptions of centralized management and homogeneous connectivity which makes them sub-optimal and sometimes infeasible to be applied for scenarios that require implementing data analytics jobs on highly distributed data sets (across racks, data centers or multi organizations). We demonstrate HDM-MC, a big data processing framework that is designed to enable the capability of performing large scale data analytics across multi-clusters with minimum extra overhead due to additional scheduling requirements. We describe the architecture and realization of the system using a step-by-step example scenario.</description><identifier>EISSN: 2575-8411</identifier><identifier>EISBN: 1538668718</identifier><identifier>EISBN: 9781538668719</identifier><identifier>DOI: 10.1109/ICDCS.2018.00165</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Big Data ; Data centers ; Distributed databases ; Distributed Systems ; Organizations ; Planning ; Scheduling ; Workflows</subject><ispartof>2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), 2018, p.1547-1550</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8416428$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8416428$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Dongyao</creatorcontrib><creatorcontrib>Sakr, Sherif</creatorcontrib><creatorcontrib>Zhu, Liming</creatorcontrib><creatorcontrib>Lee, Sung</creatorcontrib><creatorcontrib>Wu, Huijun</creatorcontrib><title>HDM-MC in-Action: A Framework for Big Data Analytics across Multiple Clusters</title><title>2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS)</title><addtitle>ICDSC</addtitle><description>Big data are increasingly collected and stored in a highly distributed infrastructures due to the development of several emerging technologies including sensor network, cloud computing, IoT and mobile computing among many other emerging technologies. In practice, the majority of existing big data processing frameworks (e.g., Hadoop, Spark, Flink) are designed based on the single-cluster setup with the assumptions of centralized management and homogeneous connectivity which makes them sub-optimal and sometimes infeasible to be applied for scenarios that require implementing data analytics jobs on highly distributed data sets (across racks, data centers or multi organizations). We demonstrate HDM-MC, a big data processing framework that is designed to enable the capability of performing large scale data analytics across multi-clusters with minimum extra overhead due to additional scheduling requirements. We describe the architecture and realization of the system using a step-by-step example scenario.</description><subject>Big Data</subject><subject>Data centers</subject><subject>Distributed databases</subject><subject>Distributed Systems</subject><subject>Organizations</subject><subject>Planning</subject><subject>Scheduling</subject><subject>Workflows</subject><issn>2575-8411</issn><isbn>1538668718</isbn><isbn>9781538668719</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj09LwzAchqMgOOfugpd8gdb88r_earu5wYoH9TzSNpFo144kQ_btnejpPTzw8LwI3QHJAUjxsKnq6jWnBHROCEhxgW5AMC2lVqAv0YwKJTLNAa7RIsZPQgiVmhMlZqhZ103WVNiPWdklP42PuMSrYPb2ewpf2E0BP_kPXJtkcDma4ZR8F7HpwhQjbo5D8ofB4mo4xmRDvEVXzgzRLv53jt5Xy7dqnW1fnjdVuc08KJEyxSSXrOWu0KSn52RmoHeEGkFNoTpqqQOtWq50axl3raPQiu4XFZ1oe87m6P7P6621u0PwexNOu_NDyalmP6fsTE4</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Wu, Dongyao</creator><creator>Sakr, Sherif</creator><creator>Zhu, Liming</creator><creator>Lee, Sung</creator><creator>Wu, Huijun</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201807</creationdate><title>HDM-MC in-Action: A Framework for Big Data Analytics across Multiple Clusters</title><author>Wu, Dongyao ; Sakr, Sherif ; Zhu, Liming ; Lee, Sung ; Wu, Huijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-736463b4f980d20013a1df02a52a97c2e2f187b478be34fbf21b5ca97c9c5bd43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Big Data</topic><topic>Data centers</topic><topic>Distributed databases</topic><topic>Distributed Systems</topic><topic>Organizations</topic><topic>Planning</topic><topic>Scheduling</topic><topic>Workflows</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Dongyao</creatorcontrib><creatorcontrib>Sakr, Sherif</creatorcontrib><creatorcontrib>Zhu, Liming</creatorcontrib><creatorcontrib>Lee, Sung</creatorcontrib><creatorcontrib>Wu, Huijun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Dongyao</au><au>Sakr, Sherif</au><au>Zhu, Liming</au><au>Lee, Sung</au><au>Wu, Huijun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>HDM-MC in-Action: A Framework for Big Data Analytics across Multiple Clusters</atitle><btitle>2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS)</btitle><stitle>ICDSC</stitle><date>2018-07</date><risdate>2018</risdate><spage>1547</spage><epage>1550</epage><pages>1547-1550</pages><eissn>2575-8411</eissn><eisbn>1538668718</eisbn><eisbn>9781538668719</eisbn><coden>IEEPAD</coden><abstract>Big data are increasingly collected and stored in a highly distributed infrastructures due to the development of several emerging technologies including sensor network, cloud computing, IoT and mobile computing among many other emerging technologies. In practice, the majority of existing big data processing frameworks (e.g., Hadoop, Spark, Flink) are designed based on the single-cluster setup with the assumptions of centralized management and homogeneous connectivity which makes them sub-optimal and sometimes infeasible to be applied for scenarios that require implementing data analytics jobs on highly distributed data sets (across racks, data centers or multi organizations). We demonstrate HDM-MC, a big data processing framework that is designed to enable the capability of performing large scale data analytics across multi-clusters with minimum extra overhead due to additional scheduling requirements. We describe the architecture and realization of the system using a step-by-step example scenario.</abstract><pub>IEEE</pub><doi>10.1109/ICDCS.2018.00165</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2575-8411
ispartof 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), 2018, p.1547-1550
issn 2575-8411
language eng
recordid cdi_ieee_primary_8416428
source IEEE Xplore All Conference Series
subjects Big Data
Data centers
Distributed databases
Distributed Systems
Organizations
Planning
Scheduling
Workflows
title HDM-MC in-Action: A Framework for Big Data Analytics across Multiple Clusters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=HDM-MC%20in-Action:%20A%20Framework%20for%20Big%20Data%20Analytics%20across%20Multiple%20Clusters&rft.btitle=2018%20IEEE%2038th%20International%20Conference%20on%20Distributed%20Computing%20Systems%20(ICDCS)&rft.au=Wu,%20Dongyao&rft.date=2018-07&rft.spage=1547&rft.epage=1550&rft.pages=1547-1550&rft.eissn=2575-8411&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDCS.2018.00165&rft.eisbn=1538668718&rft.eisbn_list=9781538668719&rft_dat=%3Cieee_CHZPO%3E8416428%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-736463b4f980d20013a1df02a52a97c2e2f187b478be34fbf21b5ca97c9c5bd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8416428&rfr_iscdi=true