Loading…
Toward Ultralightweight Remote Sensing With Harmonic Lenses and Convolutional Neural Networks
In this paper, we describe our advances in manufacturing a 256-layer 7-μm thick harmonic lens with 150 and 300 mm focal distances combined with color correction, deconvolution, and a feedforwarding deep learning neural network capable of producing images approaching photographic visual quality. Whil...
Saved in:
Published in: | IEEE journal of selected topics in applied earth observations and remote sensing 2018-09, Vol.11 (9), p.3338-3348 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c297t-595d15a9cd00fc7fb4151d44de6985e0d1498f1f58ded1fb3f19f4a6aa5572193 |
---|---|
cites | cdi_FETCH-LOGICAL-c297t-595d15a9cd00fc7fb4151d44de6985e0d1498f1f58ded1fb3f19f4a6aa5572193 |
container_end_page | 3348 |
container_issue | 9 |
container_start_page | 3338 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 11 |
creator | Nikonorov, Artem V. Petrov, Maksim V. Bibikov, Sergei A. Yakimov, Pavel Y. Kutikova, Viktoriya V. Yuzifovich, Yuriy V. Morozov, Andrey A. Skidanov, Roman V. Kazanskiy, Nikolay L. |
description | In this paper, we describe our advances in manufacturing a 256-layer 7-μm thick harmonic lens with 150 and 300 mm focal distances combined with color correction, deconvolution, and a feedforwarding deep learning neural network capable of producing images approaching photographic visual quality. While reconstruction of images taken with diffractive optics was presented in previous works, this paper is the first to use deep neural networks during the restoration step. The level of imaging quality we achieved with our imaging system can facilitate the emergence of ultralightweight remote sensing cameras for nano- and pico-satellites, and for aerial remote sensing systems onboard small UAVs and solar-powered airplanes. |
doi_str_mv | 10.1109/JSTARS.2018.2856538 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8424456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8424456</ieee_id><sourcerecordid>2100048114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-595d15a9cd00fc7fb4151d44de6985e0d1498f1f58ded1fb3f19f4a6aa5572193</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKefYC8Bnztz06RtHsdQpwyF_cEnCVmTbJ1do0nq8NvbueHLPXA553LuD6EBkCEAEXfP88VoNh9SAsWQFjzjaXGGehQ4JMBTfo56IFKRACPsEl2FsCUko7lIe-h94fbKa7yso1d1td7EvTlMPDM7Fw2emyZUzRq_VXGDJ8rvXFOVeNptTcCq0Xjsmm9Xt7Fyjarxi2n9n8S98x_hGl1YVQdzc9I-Wj7cL8aTZPr6-DQeTZOSijwmXHANXIlSE2LL3K5Y11wzpk0mCm6IBiYKC5YX2miwq9SCsExlSnGe0-61Pro93v307qs1Icqta31XKEgKhBBWALDOlR5dpXcheGPlp692yv9IIPLAUR45ygNHeeLYpQbHVGWM-U8UjDLGs_QXTvRwZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100048114</pqid></control><display><type>article</type><title>Toward Ultralightweight Remote Sensing With Harmonic Lenses and Convolutional Neural Networks</title><source>Alma/SFX Local Collection</source><creator>Nikonorov, Artem V. ; Petrov, Maksim V. ; Bibikov, Sergei A. ; Yakimov, Pavel Y. ; Kutikova, Viktoriya V. ; Yuzifovich, Yuriy V. ; Morozov, Andrey A. ; Skidanov, Roman V. ; Kazanskiy, Nikolay L.</creator><creatorcontrib>Nikonorov, Artem V. ; Petrov, Maksim V. ; Bibikov, Sergei A. ; Yakimov, Pavel Y. ; Kutikova, Viktoriya V. ; Yuzifovich, Yuriy V. ; Morozov, Andrey A. ; Skidanov, Roman V. ; Kazanskiy, Nikolay L.</creatorcontrib><description>In this paper, we describe our advances in manufacturing a 256-layer 7-μm thick harmonic lens with 150 and 300 mm focal distances combined with color correction, deconvolution, and a feedforwarding deep learning neural network capable of producing images approaching photographic visual quality. While reconstruction of images taken with diffractive optics was presented in previous works, this paper is the first to use deep neural networks during the restoration step. The level of imaging quality we achieved with our imaging system can facilitate the emergence of ultralightweight remote sensing cameras for nano- and pico-satellites, and for aerial remote sensing systems onboard small UAVs and solar-powered airplanes.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2018.2856538</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Cameras ; Color correction ; Colour ; deconvolution ; deep learning ; Detection ; Diffractive optics ; Harmonic analysis ; harmonic lens ; Image color analysis ; Image quality ; Image reconstruction ; Imaging techniques ; Lenses ; Machine learning ; Neural networks ; Onboard equipment ; Optical diffraction ; Optical imaging ; Optics ; point spread function (PSF) estimation ; Remote sensing ; Remote sensing systems ; Restoration ; Satellites ; Solar energy ; Solar power ; Solar powered aircraft ; Spaceborne remote sensing ; Unmanned aerial vehicles</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2018-09, Vol.11 (9), p.3338-3348</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-595d15a9cd00fc7fb4151d44de6985e0d1498f1f58ded1fb3f19f4a6aa5572193</citedby><cites>FETCH-LOGICAL-c297t-595d15a9cd00fc7fb4151d44de6985e0d1498f1f58ded1fb3f19f4a6aa5572193</cites><orcidid>0000-0003-4292-2049 ; 0000-0002-5857-7932 ; 0000-0002-2731-8567 ; 0000-0003-1282-4069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nikonorov, Artem V.</creatorcontrib><creatorcontrib>Petrov, Maksim V.</creatorcontrib><creatorcontrib>Bibikov, Sergei A.</creatorcontrib><creatorcontrib>Yakimov, Pavel Y.</creatorcontrib><creatorcontrib>Kutikova, Viktoriya V.</creatorcontrib><creatorcontrib>Yuzifovich, Yuriy V.</creatorcontrib><creatorcontrib>Morozov, Andrey A.</creatorcontrib><creatorcontrib>Skidanov, Roman V.</creatorcontrib><creatorcontrib>Kazanskiy, Nikolay L.</creatorcontrib><title>Toward Ultralightweight Remote Sensing With Harmonic Lenses and Convolutional Neural Networks</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>In this paper, we describe our advances in manufacturing a 256-layer 7-μm thick harmonic lens with 150 and 300 mm focal distances combined with color correction, deconvolution, and a feedforwarding deep learning neural network capable of producing images approaching photographic visual quality. While reconstruction of images taken with diffractive optics was presented in previous works, this paper is the first to use deep neural networks during the restoration step. The level of imaging quality we achieved with our imaging system can facilitate the emergence of ultralightweight remote sensing cameras for nano- and pico-satellites, and for aerial remote sensing systems onboard small UAVs and solar-powered airplanes.</description><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>Color correction</subject><subject>Colour</subject><subject>deconvolution</subject><subject>deep learning</subject><subject>Detection</subject><subject>Diffractive optics</subject><subject>Harmonic analysis</subject><subject>harmonic lens</subject><subject>Image color analysis</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Imaging techniques</subject><subject>Lenses</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Onboard equipment</subject><subject>Optical diffraction</subject><subject>Optical imaging</subject><subject>Optics</subject><subject>point spread function (PSF) estimation</subject><subject>Remote sensing</subject><subject>Remote sensing systems</subject><subject>Restoration</subject><subject>Satellites</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Solar powered aircraft</subject><subject>Spaceborne remote sensing</subject><subject>Unmanned aerial vehicles</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOKefYC8Bnztz06RtHsdQpwyF_cEnCVmTbJ1do0nq8NvbueHLPXA553LuD6EBkCEAEXfP88VoNh9SAsWQFjzjaXGGehQ4JMBTfo56IFKRACPsEl2FsCUko7lIe-h94fbKa7yso1d1td7EvTlMPDM7Fw2emyZUzRq_VXGDJ8rvXFOVeNptTcCq0Xjsmm9Xt7Fyjarxi2n9n8S98x_hGl1YVQdzc9I-Wj7cL8aTZPr6-DQeTZOSijwmXHANXIlSE2LL3K5Y11wzpk0mCm6IBiYKC5YX2miwq9SCsExlSnGe0-61Pro93v307qs1Icqta31XKEgKhBBWALDOlR5dpXcheGPlp692yv9IIPLAUR45ygNHeeLYpQbHVGWM-U8UjDLGs_QXTvRwZg</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Nikonorov, Artem V.</creator><creator>Petrov, Maksim V.</creator><creator>Bibikov, Sergei A.</creator><creator>Yakimov, Pavel Y.</creator><creator>Kutikova, Viktoriya V.</creator><creator>Yuzifovich, Yuriy V.</creator><creator>Morozov, Andrey A.</creator><creator>Skidanov, Roman V.</creator><creator>Kazanskiy, Nikolay L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4292-2049</orcidid><orcidid>https://orcid.org/0000-0002-5857-7932</orcidid><orcidid>https://orcid.org/0000-0002-2731-8567</orcidid><orcidid>https://orcid.org/0000-0003-1282-4069</orcidid></search><sort><creationdate>20180901</creationdate><title>Toward Ultralightweight Remote Sensing With Harmonic Lenses and Convolutional Neural Networks</title><author>Nikonorov, Artem V. ; Petrov, Maksim V. ; Bibikov, Sergei A. ; Yakimov, Pavel Y. ; Kutikova, Viktoriya V. ; Yuzifovich, Yuriy V. ; Morozov, Andrey A. ; Skidanov, Roman V. ; Kazanskiy, Nikolay L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-595d15a9cd00fc7fb4151d44de6985e0d1498f1f58ded1fb3f19f4a6aa5572193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>Color correction</topic><topic>Colour</topic><topic>deconvolution</topic><topic>deep learning</topic><topic>Detection</topic><topic>Diffractive optics</topic><topic>Harmonic analysis</topic><topic>harmonic lens</topic><topic>Image color analysis</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Imaging techniques</topic><topic>Lenses</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Onboard equipment</topic><topic>Optical diffraction</topic><topic>Optical imaging</topic><topic>Optics</topic><topic>point spread function (PSF) estimation</topic><topic>Remote sensing</topic><topic>Remote sensing systems</topic><topic>Restoration</topic><topic>Satellites</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Solar powered aircraft</topic><topic>Spaceborne remote sensing</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikonorov, Artem V.</creatorcontrib><creatorcontrib>Petrov, Maksim V.</creatorcontrib><creatorcontrib>Bibikov, Sergei A.</creatorcontrib><creatorcontrib>Yakimov, Pavel Y.</creatorcontrib><creatorcontrib>Kutikova, Viktoriya V.</creatorcontrib><creatorcontrib>Yuzifovich, Yuriy V.</creatorcontrib><creatorcontrib>Morozov, Andrey A.</creatorcontrib><creatorcontrib>Skidanov, Roman V.</creatorcontrib><creatorcontrib>Kazanskiy, Nikolay L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikonorov, Artem V.</au><au>Petrov, Maksim V.</au><au>Bibikov, Sergei A.</au><au>Yakimov, Pavel Y.</au><au>Kutikova, Viktoriya V.</au><au>Yuzifovich, Yuriy V.</au><au>Morozov, Andrey A.</au><au>Skidanov, Roman V.</au><au>Kazanskiy, Nikolay L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Ultralightweight Remote Sensing With Harmonic Lenses and Convolutional Neural Networks</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>11</volume><issue>9</issue><spage>3338</spage><epage>3348</epage><pages>3338-3348</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>In this paper, we describe our advances in manufacturing a 256-layer 7-μm thick harmonic lens with 150 and 300 mm focal distances combined with color correction, deconvolution, and a feedforwarding deep learning neural network capable of producing images approaching photographic visual quality. While reconstruction of images taken with diffractive optics was presented in previous works, this paper is the first to use deep neural networks during the restoration step. The level of imaging quality we achieved with our imaging system can facilitate the emergence of ultralightweight remote sensing cameras for nano- and pico-satellites, and for aerial remote sensing systems onboard small UAVs and solar-powered airplanes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2018.2856538</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4292-2049</orcidid><orcidid>https://orcid.org/0000-0002-5857-7932</orcidid><orcidid>https://orcid.org/0000-0002-2731-8567</orcidid><orcidid>https://orcid.org/0000-0003-1282-4069</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2018-09, Vol.11 (9), p.3338-3348 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_ieee_primary_8424456 |
source | Alma/SFX Local Collection |
subjects | Artificial neural networks Cameras Color correction Colour deconvolution deep learning Detection Diffractive optics Harmonic analysis harmonic lens Image color analysis Image quality Image reconstruction Imaging techniques Lenses Machine learning Neural networks Onboard equipment Optical diffraction Optical imaging Optics point spread function (PSF) estimation Remote sensing Remote sensing systems Restoration Satellites Solar energy Solar power Solar powered aircraft Spaceborne remote sensing Unmanned aerial vehicles |
title | Toward Ultralightweight Remote Sensing With Harmonic Lenses and Convolutional Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Ultralightweight%20Remote%20Sensing%20With%20Harmonic%20Lenses%20and%20Convolutional%20Neural%20Networks&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Nikonorov,%20Artem%20V.&rft.date=2018-09-01&rft.volume=11&rft.issue=9&rft.spage=3338&rft.epage=3348&rft.pages=3338-3348&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2018.2856538&rft_dat=%3Cproquest_ieee_%3E2100048114%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-595d15a9cd00fc7fb4151d44de6985e0d1498f1f58ded1fb3f19f4a6aa5572193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2100048114&rft_id=info:pmid/&rft_ieee_id=8424456&rfr_iscdi=true |