Loading…

Toward Ultralightweight Remote Sensing With Harmonic Lenses and Convolutional Neural Networks

In this paper, we describe our advances in manufacturing a 256-layer 7-μm thick harmonic lens with 150 and 300 mm focal distances combined with color correction, deconvolution, and a feedforwarding deep learning neural network capable of producing images approaching photographic visual quality. Whil...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing 2018-09, Vol.11 (9), p.3338-3348
Main Authors: Nikonorov, Artem V., Petrov, Maksim V., Bibikov, Sergei A., Yakimov, Pavel Y., Kutikova, Viktoriya V., Yuzifovich, Yuriy V., Morozov, Andrey A., Skidanov, Roman V., Kazanskiy, Nikolay L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-595d15a9cd00fc7fb4151d44de6985e0d1498f1f58ded1fb3f19f4a6aa5572193
cites cdi_FETCH-LOGICAL-c297t-595d15a9cd00fc7fb4151d44de6985e0d1498f1f58ded1fb3f19f4a6aa5572193
container_end_page 3348
container_issue 9
container_start_page 3338
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 11
creator Nikonorov, Artem V.
Petrov, Maksim V.
Bibikov, Sergei A.
Yakimov, Pavel Y.
Kutikova, Viktoriya V.
Yuzifovich, Yuriy V.
Morozov, Andrey A.
Skidanov, Roman V.
Kazanskiy, Nikolay L.
description In this paper, we describe our advances in manufacturing a 256-layer 7-μm thick harmonic lens with 150 and 300 mm focal distances combined with color correction, deconvolution, and a feedforwarding deep learning neural network capable of producing images approaching photographic visual quality. While reconstruction of images taken with diffractive optics was presented in previous works, this paper is the first to use deep neural networks during the restoration step. The level of imaging quality we achieved with our imaging system can facilitate the emergence of ultralightweight remote sensing cameras for nano- and pico-satellites, and for aerial remote sensing systems onboard small UAVs and solar-powered airplanes.
doi_str_mv 10.1109/JSTARS.2018.2856538
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8424456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8424456</ieee_id><sourcerecordid>2100048114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-595d15a9cd00fc7fb4151d44de6985e0d1498f1f58ded1fb3f19f4a6aa5572193</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKefYC8Bnztz06RtHsdQpwyF_cEnCVmTbJ1do0nq8NvbueHLPXA553LuD6EBkCEAEXfP88VoNh9SAsWQFjzjaXGGehQ4JMBTfo56IFKRACPsEl2FsCUko7lIe-h94fbKa7yso1d1td7EvTlMPDM7Fw2emyZUzRq_VXGDJ8rvXFOVeNptTcCq0Xjsmm9Xt7Fyjarxi2n9n8S98x_hGl1YVQdzc9I-Wj7cL8aTZPr6-DQeTZOSijwmXHANXIlSE2LL3K5Y11wzpk0mCm6IBiYKC5YX2miwq9SCsExlSnGe0-61Pro93v307qs1Icqta31XKEgKhBBWALDOlR5dpXcheGPlp692yv9IIPLAUR45ygNHeeLYpQbHVGWM-U8UjDLGs_QXTvRwZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100048114</pqid></control><display><type>article</type><title>Toward Ultralightweight Remote Sensing With Harmonic Lenses and Convolutional Neural Networks</title><source>Alma/SFX Local Collection</source><creator>Nikonorov, Artem V. ; Petrov, Maksim V. ; Bibikov, Sergei A. ; Yakimov, Pavel Y. ; Kutikova, Viktoriya V. ; Yuzifovich, Yuriy V. ; Morozov, Andrey A. ; Skidanov, Roman V. ; Kazanskiy, Nikolay L.</creator><creatorcontrib>Nikonorov, Artem V. ; Petrov, Maksim V. ; Bibikov, Sergei A. ; Yakimov, Pavel Y. ; Kutikova, Viktoriya V. ; Yuzifovich, Yuriy V. ; Morozov, Andrey A. ; Skidanov, Roman V. ; Kazanskiy, Nikolay L.</creatorcontrib><description>In this paper, we describe our advances in manufacturing a 256-layer 7-μm thick harmonic lens with 150 and 300 mm focal distances combined with color correction, deconvolution, and a feedforwarding deep learning neural network capable of producing images approaching photographic visual quality. While reconstruction of images taken with diffractive optics was presented in previous works, this paper is the first to use deep neural networks during the restoration step. The level of imaging quality we achieved with our imaging system can facilitate the emergence of ultralightweight remote sensing cameras for nano- and pico-satellites, and for aerial remote sensing systems onboard small UAVs and solar-powered airplanes.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2018.2856538</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Cameras ; Color correction ; Colour ; deconvolution ; deep learning ; Detection ; Diffractive optics ; Harmonic analysis ; harmonic lens ; Image color analysis ; Image quality ; Image reconstruction ; Imaging techniques ; Lenses ; Machine learning ; Neural networks ; Onboard equipment ; Optical diffraction ; Optical imaging ; Optics ; point spread function (PSF) estimation ; Remote sensing ; Remote sensing systems ; Restoration ; Satellites ; Solar energy ; Solar power ; Solar powered aircraft ; Spaceborne remote sensing ; Unmanned aerial vehicles</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2018-09, Vol.11 (9), p.3338-3348</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-595d15a9cd00fc7fb4151d44de6985e0d1498f1f58ded1fb3f19f4a6aa5572193</citedby><cites>FETCH-LOGICAL-c297t-595d15a9cd00fc7fb4151d44de6985e0d1498f1f58ded1fb3f19f4a6aa5572193</cites><orcidid>0000-0003-4292-2049 ; 0000-0002-5857-7932 ; 0000-0002-2731-8567 ; 0000-0003-1282-4069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nikonorov, Artem V.</creatorcontrib><creatorcontrib>Petrov, Maksim V.</creatorcontrib><creatorcontrib>Bibikov, Sergei A.</creatorcontrib><creatorcontrib>Yakimov, Pavel Y.</creatorcontrib><creatorcontrib>Kutikova, Viktoriya V.</creatorcontrib><creatorcontrib>Yuzifovich, Yuriy V.</creatorcontrib><creatorcontrib>Morozov, Andrey A.</creatorcontrib><creatorcontrib>Skidanov, Roman V.</creatorcontrib><creatorcontrib>Kazanskiy, Nikolay L.</creatorcontrib><title>Toward Ultralightweight Remote Sensing With Harmonic Lenses and Convolutional Neural Networks</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>In this paper, we describe our advances in manufacturing a 256-layer 7-μm thick harmonic lens with 150 and 300 mm focal distances combined with color correction, deconvolution, and a feedforwarding deep learning neural network capable of producing images approaching photographic visual quality. While reconstruction of images taken with diffractive optics was presented in previous works, this paper is the first to use deep neural networks during the restoration step. The level of imaging quality we achieved with our imaging system can facilitate the emergence of ultralightweight remote sensing cameras for nano- and pico-satellites, and for aerial remote sensing systems onboard small UAVs and solar-powered airplanes.</description><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>Color correction</subject><subject>Colour</subject><subject>deconvolution</subject><subject>deep learning</subject><subject>Detection</subject><subject>Diffractive optics</subject><subject>Harmonic analysis</subject><subject>harmonic lens</subject><subject>Image color analysis</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Imaging techniques</subject><subject>Lenses</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Onboard equipment</subject><subject>Optical diffraction</subject><subject>Optical imaging</subject><subject>Optics</subject><subject>point spread function (PSF) estimation</subject><subject>Remote sensing</subject><subject>Remote sensing systems</subject><subject>Restoration</subject><subject>Satellites</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Solar powered aircraft</subject><subject>Spaceborne remote sensing</subject><subject>Unmanned aerial vehicles</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOKefYC8Bnztz06RtHsdQpwyF_cEnCVmTbJ1do0nq8NvbueHLPXA553LuD6EBkCEAEXfP88VoNh9SAsWQFjzjaXGGehQ4JMBTfo56IFKRACPsEl2FsCUko7lIe-h94fbKa7yso1d1td7EvTlMPDM7Fw2emyZUzRq_VXGDJ8rvXFOVeNptTcCq0Xjsmm9Xt7Fyjarxi2n9n8S98x_hGl1YVQdzc9I-Wj7cL8aTZPr6-DQeTZOSijwmXHANXIlSE2LL3K5Y11wzpk0mCm6IBiYKC5YX2miwq9SCsExlSnGe0-61Pro93v307qs1Icqta31XKEgKhBBWALDOlR5dpXcheGPlp692yv9IIPLAUR45ygNHeeLYpQbHVGWM-U8UjDLGs_QXTvRwZg</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Nikonorov, Artem V.</creator><creator>Petrov, Maksim V.</creator><creator>Bibikov, Sergei A.</creator><creator>Yakimov, Pavel Y.</creator><creator>Kutikova, Viktoriya V.</creator><creator>Yuzifovich, Yuriy V.</creator><creator>Morozov, Andrey A.</creator><creator>Skidanov, Roman V.</creator><creator>Kazanskiy, Nikolay L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4292-2049</orcidid><orcidid>https://orcid.org/0000-0002-5857-7932</orcidid><orcidid>https://orcid.org/0000-0002-2731-8567</orcidid><orcidid>https://orcid.org/0000-0003-1282-4069</orcidid></search><sort><creationdate>20180901</creationdate><title>Toward Ultralightweight Remote Sensing With Harmonic Lenses and Convolutional Neural Networks</title><author>Nikonorov, Artem V. ; Petrov, Maksim V. ; Bibikov, Sergei A. ; Yakimov, Pavel Y. ; Kutikova, Viktoriya V. ; Yuzifovich, Yuriy V. ; Morozov, Andrey A. ; Skidanov, Roman V. ; Kazanskiy, Nikolay L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-595d15a9cd00fc7fb4151d44de6985e0d1498f1f58ded1fb3f19f4a6aa5572193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>Color correction</topic><topic>Colour</topic><topic>deconvolution</topic><topic>deep learning</topic><topic>Detection</topic><topic>Diffractive optics</topic><topic>Harmonic analysis</topic><topic>harmonic lens</topic><topic>Image color analysis</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Imaging techniques</topic><topic>Lenses</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Onboard equipment</topic><topic>Optical diffraction</topic><topic>Optical imaging</topic><topic>Optics</topic><topic>point spread function (PSF) estimation</topic><topic>Remote sensing</topic><topic>Remote sensing systems</topic><topic>Restoration</topic><topic>Satellites</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Solar powered aircraft</topic><topic>Spaceborne remote sensing</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikonorov, Artem V.</creatorcontrib><creatorcontrib>Petrov, Maksim V.</creatorcontrib><creatorcontrib>Bibikov, Sergei A.</creatorcontrib><creatorcontrib>Yakimov, Pavel Y.</creatorcontrib><creatorcontrib>Kutikova, Viktoriya V.</creatorcontrib><creatorcontrib>Yuzifovich, Yuriy V.</creatorcontrib><creatorcontrib>Morozov, Andrey A.</creatorcontrib><creatorcontrib>Skidanov, Roman V.</creatorcontrib><creatorcontrib>Kazanskiy, Nikolay L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikonorov, Artem V.</au><au>Petrov, Maksim V.</au><au>Bibikov, Sergei A.</au><au>Yakimov, Pavel Y.</au><au>Kutikova, Viktoriya V.</au><au>Yuzifovich, Yuriy V.</au><au>Morozov, Andrey A.</au><au>Skidanov, Roman V.</au><au>Kazanskiy, Nikolay L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Ultralightweight Remote Sensing With Harmonic Lenses and Convolutional Neural Networks</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>11</volume><issue>9</issue><spage>3338</spage><epage>3348</epage><pages>3338-3348</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>In this paper, we describe our advances in manufacturing a 256-layer 7-μm thick harmonic lens with 150 and 300 mm focal distances combined with color correction, deconvolution, and a feedforwarding deep learning neural network capable of producing images approaching photographic visual quality. While reconstruction of images taken with diffractive optics was presented in previous works, this paper is the first to use deep neural networks during the restoration step. The level of imaging quality we achieved with our imaging system can facilitate the emergence of ultralightweight remote sensing cameras for nano- and pico-satellites, and for aerial remote sensing systems onboard small UAVs and solar-powered airplanes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2018.2856538</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4292-2049</orcidid><orcidid>https://orcid.org/0000-0002-5857-7932</orcidid><orcidid>https://orcid.org/0000-0002-2731-8567</orcidid><orcidid>https://orcid.org/0000-0003-1282-4069</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2018-09, Vol.11 (9), p.3338-3348
issn 1939-1404
2151-1535
language eng
recordid cdi_ieee_primary_8424456
source Alma/SFX Local Collection
subjects Artificial neural networks
Cameras
Color correction
Colour
deconvolution
deep learning
Detection
Diffractive optics
Harmonic analysis
harmonic lens
Image color analysis
Image quality
Image reconstruction
Imaging techniques
Lenses
Machine learning
Neural networks
Onboard equipment
Optical diffraction
Optical imaging
Optics
point spread function (PSF) estimation
Remote sensing
Remote sensing systems
Restoration
Satellites
Solar energy
Solar power
Solar powered aircraft
Spaceborne remote sensing
Unmanned aerial vehicles
title Toward Ultralightweight Remote Sensing With Harmonic Lenses and Convolutional Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Ultralightweight%20Remote%20Sensing%20With%20Harmonic%20Lenses%20and%20Convolutional%20Neural%20Networks&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Nikonorov,%20Artem%20V.&rft.date=2018-09-01&rft.volume=11&rft.issue=9&rft.spage=3338&rft.epage=3348&rft.pages=3338-3348&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2018.2856538&rft_dat=%3Cproquest_ieee_%3E2100048114%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-595d15a9cd00fc7fb4151d44de6985e0d1498f1f58ded1fb3f19f4a6aa5572193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2100048114&rft_id=info:pmid/&rft_ieee_id=8424456&rfr_iscdi=true