Loading…

Micromesh-Enabled Low-Cost Thermal Ground Planes for High Heat Flux Power Electronics

SiC and GaN power electronic devices enable smaller die sizes and increase power densities with high heat fluxes ranging from 100 to 1,000 W/cm2, which calls for efficient thermal management solutions with matched ultra-thin form factors. Thermal ground plane is a vapor chamber fabricated using prin...

Full description

Saved in:
Bibliographic Details
Main Authors: Xu, Shanshan, Lewis, Ryan, Wen, Rongfu, Yang, Ronggui, Lee, Yung-Cheng, Kim, Woochan, Nguyen, Luu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2253
container_issue
container_start_page 2248
container_title
container_volume
creator Xu, Shanshan
Lewis, Ryan
Wen, Rongfu
Yang, Ronggui
Lee, Yung-Cheng
Kim, Woochan
Nguyen, Luu
description SiC and GaN power electronic devices enable smaller die sizes and increase power densities with high heat fluxes ranging from 100 to 1,000 W/cm2, which calls for efficient thermal management solutions with matched ultra-thin form factors. Thermal ground plane is a vapor chamber fabricated using printed circuit board technologies. It is recognized as one of the most effective heat spreaders to dissipate high heat fluxes. Similar to heat pipes, thermal ground planes rely on self-sustaining capillary evaporation and condensation cycle. Nanostructures are being explored for improving such phase-change heat transfer devices; however, these nanoscale solutions are expensive and susceptible to reliability concerns. Here, we develop a low-cost and reliable thermal ground plane enabled by commercial copper micromesh wicking structures with enhanced capillary evaporation heat transfer, which can remove high heat fluxes, up to 425 W/cm2.
doi_str_mv 10.1109/ECTC.2018.00338
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8429851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8429851</ieee_id><sourcerecordid>8429851</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-abdf5a67154251306b9a4542ef8ba1e60d45b7e17d37bf753d805461fb4e5e1f3</originalsourceid><addsrcrecordid>eNotzE1PgzAcgPFqYuKcO3vw0i8AtvSVoyFsmGDcgZ2XFv4VDFDTsky_vUvm6XlOP4SeKEkpJflLWTRFmhGqU0IY0zfogQqmJc_znN2iVcaUSoTK5D3axPhFCMmk5kSpFTq8D23wE8Q-KWdjR-hw7c9J4eOCmx7CZEa8C_40d3g_mhkidj7gavjscQVmwdvx9IP3_gwBlyO0S_Dz0MZHdOfMGGHz3zU6bMumqJL6Y_dWvNbJQJVYEmM7J4xUVPBMUEakzQ2_PDhtDQVJOi6sAqo6pqxTgnWaCC6psxwEUMfW6PnqDgBw_A7DZMLvUfMs1xfvDySoT-I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Micromesh-Enabled Low-Cost Thermal Ground Planes for High Heat Flux Power Electronics</title><source>IEEE Xplore All Conference Series</source><creator>Xu, Shanshan ; Lewis, Ryan ; Wen, Rongfu ; Yang, Ronggui ; Lee, Yung-Cheng ; Kim, Woochan ; Nguyen, Luu</creator><creatorcontrib>Xu, Shanshan ; Lewis, Ryan ; Wen, Rongfu ; Yang, Ronggui ; Lee, Yung-Cheng ; Kim, Woochan ; Nguyen, Luu</creatorcontrib><description>SiC and GaN power electronic devices enable smaller die sizes and increase power densities with high heat fluxes ranging from 100 to 1,000 W/cm2, which calls for efficient thermal management solutions with matched ultra-thin form factors. Thermal ground plane is a vapor chamber fabricated using printed circuit board technologies. It is recognized as one of the most effective heat spreaders to dissipate high heat fluxes. Similar to heat pipes, thermal ground planes rely on self-sustaining capillary evaporation and condensation cycle. Nanostructures are being explored for improving such phase-change heat transfer devices; however, these nanoscale solutions are expensive and susceptible to reliability concerns. Here, we develop a low-cost and reliable thermal ground plane enabled by commercial copper micromesh wicking structures with enhanced capillary evaporation heat transfer, which can remove high heat fluxes, up to 425 W/cm2.</description><identifier>EISSN: 2377-5726</identifier><identifier>EISBN: 1538649993</identifier><identifier>EISBN: 9781538649992</identifier><identifier>DOI: 10.1109/ECTC.2018.00338</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>capillary evaporation ; Copper ; heat pipes ; Heat transfer ; heat transfer enhancement ; Heating systems ; Liquids ; micromesh ; Periodic structures ; Resistance ; Temperature measurement ; thermal management ; wicking</subject><ispartof>2018 IEEE 68th Electronic Components and Technology Conference (ECTC), 2018, p.2248-2253</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8429851$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8429851$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Shanshan</creatorcontrib><creatorcontrib>Lewis, Ryan</creatorcontrib><creatorcontrib>Wen, Rongfu</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><creatorcontrib>Lee, Yung-Cheng</creatorcontrib><creatorcontrib>Kim, Woochan</creatorcontrib><creatorcontrib>Nguyen, Luu</creatorcontrib><title>Micromesh-Enabled Low-Cost Thermal Ground Planes for High Heat Flux Power Electronics</title><title>2018 IEEE 68th Electronic Components and Technology Conference (ECTC)</title><addtitle>ECTC</addtitle><description>SiC and GaN power electronic devices enable smaller die sizes and increase power densities with high heat fluxes ranging from 100 to 1,000 W/cm2, which calls for efficient thermal management solutions with matched ultra-thin form factors. Thermal ground plane is a vapor chamber fabricated using printed circuit board technologies. It is recognized as one of the most effective heat spreaders to dissipate high heat fluxes. Similar to heat pipes, thermal ground planes rely on self-sustaining capillary evaporation and condensation cycle. Nanostructures are being explored for improving such phase-change heat transfer devices; however, these nanoscale solutions are expensive and susceptible to reliability concerns. Here, we develop a low-cost and reliable thermal ground plane enabled by commercial copper micromesh wicking structures with enhanced capillary evaporation heat transfer, which can remove high heat fluxes, up to 425 W/cm2.</description><subject>capillary evaporation</subject><subject>Copper</subject><subject>heat pipes</subject><subject>Heat transfer</subject><subject>heat transfer enhancement</subject><subject>Heating systems</subject><subject>Liquids</subject><subject>micromesh</subject><subject>Periodic structures</subject><subject>Resistance</subject><subject>Temperature measurement</subject><subject>thermal management</subject><subject>wicking</subject><issn>2377-5726</issn><isbn>1538649993</isbn><isbn>9781538649992</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzE1PgzAcgPFqYuKcO3vw0i8AtvSVoyFsmGDcgZ2XFv4VDFDTsky_vUvm6XlOP4SeKEkpJflLWTRFmhGqU0IY0zfogQqmJc_znN2iVcaUSoTK5D3axPhFCMmk5kSpFTq8D23wE8Q-KWdjR-hw7c9J4eOCmx7CZEa8C_40d3g_mhkidj7gavjscQVmwdvx9IP3_gwBlyO0S_Dz0MZHdOfMGGHz3zU6bMumqJL6Y_dWvNbJQJVYEmM7J4xUVPBMUEakzQ2_PDhtDQVJOi6sAqo6pqxTgnWaCC6psxwEUMfW6PnqDgBw_A7DZMLvUfMs1xfvDySoT-I</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Xu, Shanshan</creator><creator>Lewis, Ryan</creator><creator>Wen, Rongfu</creator><creator>Yang, Ronggui</creator><creator>Lee, Yung-Cheng</creator><creator>Kim, Woochan</creator><creator>Nguyen, Luu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201805</creationdate><title>Micromesh-Enabled Low-Cost Thermal Ground Planes for High Heat Flux Power Electronics</title><author>Xu, Shanshan ; Lewis, Ryan ; Wen, Rongfu ; Yang, Ronggui ; Lee, Yung-Cheng ; Kim, Woochan ; Nguyen, Luu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-abdf5a67154251306b9a4542ef8ba1e60d45b7e17d37bf753d805461fb4e5e1f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>capillary evaporation</topic><topic>Copper</topic><topic>heat pipes</topic><topic>Heat transfer</topic><topic>heat transfer enhancement</topic><topic>Heating systems</topic><topic>Liquids</topic><topic>micromesh</topic><topic>Periodic structures</topic><topic>Resistance</topic><topic>Temperature measurement</topic><topic>thermal management</topic><topic>wicking</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shanshan</creatorcontrib><creatorcontrib>Lewis, Ryan</creatorcontrib><creatorcontrib>Wen, Rongfu</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><creatorcontrib>Lee, Yung-Cheng</creatorcontrib><creatorcontrib>Kim, Woochan</creatorcontrib><creatorcontrib>Nguyen, Luu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Shanshan</au><au>Lewis, Ryan</au><au>Wen, Rongfu</au><au>Yang, Ronggui</au><au>Lee, Yung-Cheng</au><au>Kim, Woochan</au><au>Nguyen, Luu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Micromesh-Enabled Low-Cost Thermal Ground Planes for High Heat Flux Power Electronics</atitle><btitle>2018 IEEE 68th Electronic Components and Technology Conference (ECTC)</btitle><stitle>ECTC</stitle><date>2018-05</date><risdate>2018</risdate><spage>2248</spage><epage>2253</epage><pages>2248-2253</pages><eissn>2377-5726</eissn><eisbn>1538649993</eisbn><eisbn>9781538649992</eisbn><coden>IEEPAD</coden><abstract>SiC and GaN power electronic devices enable smaller die sizes and increase power densities with high heat fluxes ranging from 100 to 1,000 W/cm2, which calls for efficient thermal management solutions with matched ultra-thin form factors. Thermal ground plane is a vapor chamber fabricated using printed circuit board technologies. It is recognized as one of the most effective heat spreaders to dissipate high heat fluxes. Similar to heat pipes, thermal ground planes rely on self-sustaining capillary evaporation and condensation cycle. Nanostructures are being explored for improving such phase-change heat transfer devices; however, these nanoscale solutions are expensive and susceptible to reliability concerns. Here, we develop a low-cost and reliable thermal ground plane enabled by commercial copper micromesh wicking structures with enhanced capillary evaporation heat transfer, which can remove high heat fluxes, up to 425 W/cm2.</abstract><pub>IEEE</pub><doi>10.1109/ECTC.2018.00338</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2377-5726
ispartof 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), 2018, p.2248-2253
issn 2377-5726
language eng
recordid cdi_ieee_primary_8429851
source IEEE Xplore All Conference Series
subjects capillary evaporation
Copper
heat pipes
Heat transfer
heat transfer enhancement
Heating systems
Liquids
micromesh
Periodic structures
Resistance
Temperature measurement
thermal management
wicking
title Micromesh-Enabled Low-Cost Thermal Ground Planes for High Heat Flux Power Electronics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Micromesh-Enabled%20Low-Cost%20Thermal%20Ground%20Planes%20for%20High%20Heat%20Flux%20Power%20Electronics&rft.btitle=2018%20IEEE%2068th%20Electronic%20Components%20and%20Technology%20Conference%20(ECTC)&rft.au=Xu,%20Shanshan&rft.date=2018-05&rft.spage=2248&rft.epage=2253&rft.pages=2248-2253&rft.eissn=2377-5726&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ECTC.2018.00338&rft.eisbn=1538649993&rft.eisbn_list=9781538649992&rft_dat=%3Cieee_CHZPO%3E8429851%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-abdf5a67154251306b9a4542ef8ba1e60d45b7e17d37bf753d805461fb4e5e1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8429851&rfr_iscdi=true