Loading…
An Adaptive Luenberger Observer for Speed-Sensorless Estimation of Induction Machines
This work investigates the problem of speed sensorless state estimation for induction motors. We first exploit a state transformation for the induction motor model. Based on the new state coordinates, we design a new Luenberger observer, which can provide better dynamic performance compared to basel...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c223t-c0bef5ae799057c46080fdbfe05ca6451177fb8863c846da752dedddf92523ae3 |
---|---|
cites | |
container_end_page | 312 |
container_issue | |
container_start_page | 307 |
container_title | |
container_volume | |
creator | Jie You Wencen Wu Yebin Wang |
description | This work investigates the problem of speed sensorless state estimation for induction motors. We first exploit a state transformation for the induction motor model. Based on the new state coordinates, we design a new Luenberger observer, which can provide better dynamic performance compared to baseline algorithm. To address the parameter variation problem, the Lyapunov redesign method is used to achieve an adaptation with respect to the parameter α. It is shown that the proposed observer can achieve guaranteed asymptotic stability and readily extend to the time-varying speed case. Advantages of the proposed observer include guaranteed asymptotic stability of estimation errors, parameter a adaptation, and better dynamic performance. Simulation results are presented to validate the proposed method. |
doi_str_mv | 10.23919/ACC.2018.8431006 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8431006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8431006</ieee_id><sourcerecordid>8431006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-c0bef5ae799057c46080fdbfe05ca6451177fb8863c846da752dedddf92523ae3</originalsourceid><addsrcrecordid>eNotkMtOwzAURA0SEm3hAxAb_0DKtR2_llFUoFJQF6XryrGvIagkkZ1W4u-poKuZsxkdDSEPDJZcWGafqrpecmBmaUrBANQVmTMpjJIlN-aazLjQppBGsVsyz_kLgFmrYEZ2VU-r4MapOyFtjti3mD4w0U2bMZ3OJQ6JbkfEUGyxz0M6YM50lafu203d0NMh0nUfjv4P3pz_7HrMd-QmukPG-0suyO559V6_Fs3mZV1XTeE5F1PhocUoHWprQWpfKjAQQxsRpHeqlIxpHVtjlPCmVMFpyQOGEKLlkguHYkEe_3c7RNyP6SyVfvaXC8QvhgdRAA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Adaptive Luenberger Observer for Speed-Sensorless Estimation of Induction Machines</title><source>IEEE Xplore All Conference Series</source><creator>Jie You ; Wencen Wu ; Yebin Wang</creator><creatorcontrib>Jie You ; Wencen Wu ; Yebin Wang</creatorcontrib><description>This work investigates the problem of speed sensorless state estimation for induction motors. We first exploit a state transformation for the induction motor model. Based on the new state coordinates, we design a new Luenberger observer, which can provide better dynamic performance compared to baseline algorithm. To address the parameter variation problem, the Lyapunov redesign method is used to achieve an adaptation with respect to the parameter α. It is shown that the proposed observer can achieve guaranteed asymptotic stability and readily extend to the time-varying speed case. Advantages of the proposed observer include guaranteed asymptotic stability of estimation errors, parameter a adaptation, and better dynamic performance. Simulation results are presented to validate the proposed method.</description><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1538654288</identifier><identifier>EISBN: 9781538654286</identifier><identifier>DOI: 10.23919/ACC.2018.8431006</identifier><language>eng</language><publisher>AACC</publisher><subject>Adaptation models ; Convergence ; Induction motors ; Observers ; Rotors ; Stators</subject><ispartof>2018 Annual American Control Conference (ACC), 2018, p.307-312</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-c0bef5ae799057c46080fdbfe05ca6451177fb8863c846da752dedddf92523ae3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8431006$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8431006$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jie You</creatorcontrib><creatorcontrib>Wencen Wu</creatorcontrib><creatorcontrib>Yebin Wang</creatorcontrib><title>An Adaptive Luenberger Observer for Speed-Sensorless Estimation of Induction Machines</title><title>2018 Annual American Control Conference (ACC)</title><addtitle>ACC</addtitle><description>This work investigates the problem of speed sensorless state estimation for induction motors. We first exploit a state transformation for the induction motor model. Based on the new state coordinates, we design a new Luenberger observer, which can provide better dynamic performance compared to baseline algorithm. To address the parameter variation problem, the Lyapunov redesign method is used to achieve an adaptation with respect to the parameter α. It is shown that the proposed observer can achieve guaranteed asymptotic stability and readily extend to the time-varying speed case. Advantages of the proposed observer include guaranteed asymptotic stability of estimation errors, parameter a adaptation, and better dynamic performance. Simulation results are presented to validate the proposed method.</description><subject>Adaptation models</subject><subject>Convergence</subject><subject>Induction motors</subject><subject>Observers</subject><subject>Rotors</subject><subject>Stators</subject><issn>2378-5861</issn><isbn>1538654288</isbn><isbn>9781538654286</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtOwzAURA0SEm3hAxAb_0DKtR2_llFUoFJQF6XryrGvIagkkZ1W4u-poKuZsxkdDSEPDJZcWGafqrpecmBmaUrBANQVmTMpjJIlN-aazLjQppBGsVsyz_kLgFmrYEZ2VU-r4MapOyFtjti3mD4w0U2bMZ3OJQ6JbkfEUGyxz0M6YM50lafu203d0NMh0nUfjv4P3pz_7HrMd-QmukPG-0suyO559V6_Fs3mZV1XTeE5F1PhocUoHWprQWpfKjAQQxsRpHeqlIxpHVtjlPCmVMFpyQOGEKLlkguHYkEe_3c7RNyP6SyVfvaXC8QvhgdRAA</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Jie You</creator><creator>Wencen Wu</creator><creator>Yebin Wang</creator><general>AACC</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201806</creationdate><title>An Adaptive Luenberger Observer for Speed-Sensorless Estimation of Induction Machines</title><author>Jie You ; Wencen Wu ; Yebin Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-c0bef5ae799057c46080fdbfe05ca6451177fb8863c846da752dedddf92523ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation models</topic><topic>Convergence</topic><topic>Induction motors</topic><topic>Observers</topic><topic>Rotors</topic><topic>Stators</topic><toplevel>online_resources</toplevel><creatorcontrib>Jie You</creatorcontrib><creatorcontrib>Wencen Wu</creatorcontrib><creatorcontrib>Yebin Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jie You</au><au>Wencen Wu</au><au>Yebin Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Adaptive Luenberger Observer for Speed-Sensorless Estimation of Induction Machines</atitle><btitle>2018 Annual American Control Conference (ACC)</btitle><stitle>ACC</stitle><date>2018-06</date><risdate>2018</risdate><spage>307</spage><epage>312</epage><pages>307-312</pages><eissn>2378-5861</eissn><eisbn>1538654288</eisbn><eisbn>9781538654286</eisbn><abstract>This work investigates the problem of speed sensorless state estimation for induction motors. We first exploit a state transformation for the induction motor model. Based on the new state coordinates, we design a new Luenberger observer, which can provide better dynamic performance compared to baseline algorithm. To address the parameter variation problem, the Lyapunov redesign method is used to achieve an adaptation with respect to the parameter α. It is shown that the proposed observer can achieve guaranteed asymptotic stability and readily extend to the time-varying speed case. Advantages of the proposed observer include guaranteed asymptotic stability of estimation errors, parameter a adaptation, and better dynamic performance. Simulation results are presented to validate the proposed method.</abstract><pub>AACC</pub><doi>10.23919/ACC.2018.8431006</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2378-5861 |
ispartof | 2018 Annual American Control Conference (ACC), 2018, p.307-312 |
issn | 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_8431006 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models Convergence Induction motors Observers Rotors Stators |
title | An Adaptive Luenberger Observer for Speed-Sensorless Estimation of Induction Machines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Adaptive%20Luenberger%20Observer%20for%20Speed-Sensorless%20Estimation%20of%20Induction%20Machines&rft.btitle=2018%20Annual%20American%20Control%20Conference%20(ACC)&rft.au=Jie%20You&rft.date=2018-06&rft.spage=307&rft.epage=312&rft.pages=307-312&rft.eissn=2378-5861&rft_id=info:doi/10.23919/ACC.2018.8431006&rft.eisbn=1538654288&rft.eisbn_list=9781538654286&rft_dat=%3Cieee_CHZPO%3E8431006%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-c0bef5ae799057c46080fdbfe05ca6451177fb8863c846da752dedddf92523ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8431006&rfr_iscdi=true |