Loading…

Robust Stabilization of Linear Differential Inclusion Using Adaptive Sliding Mode Control

Control of the linear polytopic Differential Inclusion system in the presence of bounded disturbance is studied. An adaptive sliding mode control is proposed to achieve the asymptotic stability of the differential inclusion systems. The convergence conditions of the dynamics of sliding mode to zero...

Full description

Saved in:
Bibliographic Details
Main Authors: Nateghi, Shamila, Shtessel, Y.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5331
container_issue
container_start_page 5327
container_title
container_volume
creator Nateghi, Shamila
Shtessel, Y.
description Control of the linear polytopic Differential Inclusion system in the presence of bounded disturbance is studied. An adaptive sliding mode control is proposed to achieve the asymptotic stability of the differential inclusion systems. The convergence conditions of the dynamics of sliding mode to zero and adaptive rules to update the control signal are derived. A new Lyapunov analysis-based theorem is formulated that proves the states' convergence to zero. Finally, the efficiency of the proposed control is illustrated via simulations of a numerical linear polytopic differential inclusion system.
doi_str_mv 10.23919/ACC.2018.8431560
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8431560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8431560</ieee_id><sourcerecordid>8431560</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8746178dac628b236451f4ccd293415a4d472b38b3e7c94331decbaf1420c0493</originalsourceid><addsrcrecordid>eNotkMtKAzEYRqMg2FYfQNzkBabmzz3LYdRaGBGsXbgqmVwkMs6USSro00uxqw8Oh7P4ELoBsqTMgLmrm2ZJCeil5gyEJGdoDoJpKTjV-hzNKFO6ElrCJZrn_EkIGCPJDL2_jt0hF7wptkt9-rUljQMeI27TEOyE71OMYQpDSbbH68H1h3wUtjkNH7j2dl_Sd8CbPvkjeB59wM04lGnsr9BFtH0O16ddoO3jw1vzVLUvq3VTt1UCJUqlFZegtLdOUt1RJrmAyJ3z1DAOwnLPFe2Y7lhQznDGwAfX2QicEke4YQt0-99NIYTdfkpfdvrZnW5gf9bOUWY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust Stabilization of Linear Differential Inclusion Using Adaptive Sliding Mode Control</title><source>IEEE Xplore All Conference Series</source><creator>Nateghi, Shamila ; Shtessel, Y.</creator><creatorcontrib>Nateghi, Shamila ; Shtessel, Y.</creatorcontrib><description>Control of the linear polytopic Differential Inclusion system in the presence of bounded disturbance is studied. An adaptive sliding mode control is proposed to achieve the asymptotic stability of the differential inclusion systems. The convergence conditions of the dynamics of sliding mode to zero and adaptive rules to update the control signal are derived. A new Lyapunov analysis-based theorem is formulated that proves the states' convergence to zero. Finally, the efficiency of the proposed control is illustrated via simulations of a numerical linear polytopic differential inclusion system.</description><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1538654288</identifier><identifier>EISBN: 9781538654286</identifier><identifier>DOI: 10.23919/ACC.2018.8431560</identifier><language>eng</language><publisher>AACC</publisher><subject>Adaptation models ; Adaptive systems ; Asymptotic stability ; Lyapunov methods ; Manifolds ; Sliding mode control ; Uncertainty</subject><ispartof>2018 Annual American Control Conference (ACC), 2018, p.5327-5331</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8431560$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8431560$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nateghi, Shamila</creatorcontrib><creatorcontrib>Shtessel, Y.</creatorcontrib><title>Robust Stabilization of Linear Differential Inclusion Using Adaptive Sliding Mode Control</title><title>2018 Annual American Control Conference (ACC)</title><addtitle>ACC</addtitle><description>Control of the linear polytopic Differential Inclusion system in the presence of bounded disturbance is studied. An adaptive sliding mode control is proposed to achieve the asymptotic stability of the differential inclusion systems. The convergence conditions of the dynamics of sliding mode to zero and adaptive rules to update the control signal are derived. A new Lyapunov analysis-based theorem is formulated that proves the states' convergence to zero. Finally, the efficiency of the proposed control is illustrated via simulations of a numerical linear polytopic differential inclusion system.</description><subject>Adaptation models</subject><subject>Adaptive systems</subject><subject>Asymptotic stability</subject><subject>Lyapunov methods</subject><subject>Manifolds</subject><subject>Sliding mode control</subject><subject>Uncertainty</subject><issn>2378-5861</issn><isbn>1538654288</isbn><isbn>9781538654286</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKAzEYRqMg2FYfQNzkBabmzz3LYdRaGBGsXbgqmVwkMs6USSro00uxqw8Oh7P4ELoBsqTMgLmrm2ZJCeil5gyEJGdoDoJpKTjV-hzNKFO6ElrCJZrn_EkIGCPJDL2_jt0hF7wptkt9-rUljQMeI27TEOyE71OMYQpDSbbH68H1h3wUtjkNH7j2dl_Sd8CbPvkjeB59wM04lGnsr9BFtH0O16ddoO3jw1vzVLUvq3VTt1UCJUqlFZegtLdOUt1RJrmAyJ3z1DAOwnLPFe2Y7lhQznDGwAfX2QicEke4YQt0-99NIYTdfkpfdvrZnW5gf9bOUWY</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Nateghi, Shamila</creator><creator>Shtessel, Y.</creator><general>AACC</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201806</creationdate><title>Robust Stabilization of Linear Differential Inclusion Using Adaptive Sliding Mode Control</title><author>Nateghi, Shamila ; Shtessel, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8746178dac628b236451f4ccd293415a4d472b38b3e7c94331decbaf1420c0493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation models</topic><topic>Adaptive systems</topic><topic>Asymptotic stability</topic><topic>Lyapunov methods</topic><topic>Manifolds</topic><topic>Sliding mode control</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Nateghi, Shamila</creatorcontrib><creatorcontrib>Shtessel, Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nateghi, Shamila</au><au>Shtessel, Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust Stabilization of Linear Differential Inclusion Using Adaptive Sliding Mode Control</atitle><btitle>2018 Annual American Control Conference (ACC)</btitle><stitle>ACC</stitle><date>2018-06</date><risdate>2018</risdate><spage>5327</spage><epage>5331</epage><pages>5327-5331</pages><eissn>2378-5861</eissn><eisbn>1538654288</eisbn><eisbn>9781538654286</eisbn><abstract>Control of the linear polytopic Differential Inclusion system in the presence of bounded disturbance is studied. An adaptive sliding mode control is proposed to achieve the asymptotic stability of the differential inclusion systems. The convergence conditions of the dynamics of sliding mode to zero and adaptive rules to update the control signal are derived. A new Lyapunov analysis-based theorem is formulated that proves the states' convergence to zero. Finally, the efficiency of the proposed control is illustrated via simulations of a numerical linear polytopic differential inclusion system.</abstract><pub>AACC</pub><doi>10.23919/ACC.2018.8431560</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2378-5861
ispartof 2018 Annual American Control Conference (ACC), 2018, p.5327-5331
issn 2378-5861
language eng
recordid cdi_ieee_primary_8431560
source IEEE Xplore All Conference Series
subjects Adaptation models
Adaptive systems
Asymptotic stability
Lyapunov methods
Manifolds
Sliding mode control
Uncertainty
title Robust Stabilization of Linear Differential Inclusion Using Adaptive Sliding Mode Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20Stabilization%20of%20Linear%20Differential%20Inclusion%20Using%20Adaptive%20Sliding%20Mode%20Control&rft.btitle=2018%20Annual%20American%20Control%20Conference%20(ACC)&rft.au=Nateghi,%20Shamila&rft.date=2018-06&rft.spage=5327&rft.epage=5331&rft.pages=5327-5331&rft.eissn=2378-5861&rft_id=info:doi/10.23919/ACC.2018.8431560&rft.eisbn=1538654288&rft.eisbn_list=9781538654286&rft_dat=%3Cieee_CHZPO%3E8431560%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-8746178dac628b236451f4ccd293415a4d472b38b3e7c94331decbaf1420c0493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8431560&rfr_iscdi=true