Loading…
Robust Stabilization of Linear Differential Inclusion Using Adaptive Sliding Mode Control
Control of the linear polytopic Differential Inclusion system in the presence of bounded disturbance is studied. An adaptive sliding mode control is proposed to achieve the asymptotic stability of the differential inclusion systems. The convergence conditions of the dynamics of sliding mode to zero...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5331 |
container_issue | |
container_start_page | 5327 |
container_title | |
container_volume | |
creator | Nateghi, Shamila Shtessel, Y. |
description | Control of the linear polytopic Differential Inclusion system in the presence of bounded disturbance is studied. An adaptive sliding mode control is proposed to achieve the asymptotic stability of the differential inclusion systems. The convergence conditions of the dynamics of sliding mode to zero and adaptive rules to update the control signal are derived. A new Lyapunov analysis-based theorem is formulated that proves the states' convergence to zero. Finally, the efficiency of the proposed control is illustrated via simulations of a numerical linear polytopic differential inclusion system. |
doi_str_mv | 10.23919/ACC.2018.8431560 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8431560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8431560</ieee_id><sourcerecordid>8431560</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8746178dac628b236451f4ccd293415a4d472b38b3e7c94331decbaf1420c0493</originalsourceid><addsrcrecordid>eNotkMtKAzEYRqMg2FYfQNzkBabmzz3LYdRaGBGsXbgqmVwkMs6USSro00uxqw8Oh7P4ELoBsqTMgLmrm2ZJCeil5gyEJGdoDoJpKTjV-hzNKFO6ElrCJZrn_EkIGCPJDL2_jt0hF7wptkt9-rUljQMeI27TEOyE71OMYQpDSbbH68H1h3wUtjkNH7j2dl_Sd8CbPvkjeB59wM04lGnsr9BFtH0O16ddoO3jw1vzVLUvq3VTt1UCJUqlFZegtLdOUt1RJrmAyJ3z1DAOwnLPFe2Y7lhQznDGwAfX2QicEke4YQt0-99NIYTdfkpfdvrZnW5gf9bOUWY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust Stabilization of Linear Differential Inclusion Using Adaptive Sliding Mode Control</title><source>IEEE Xplore All Conference Series</source><creator>Nateghi, Shamila ; Shtessel, Y.</creator><creatorcontrib>Nateghi, Shamila ; Shtessel, Y.</creatorcontrib><description>Control of the linear polytopic Differential Inclusion system in the presence of bounded disturbance is studied. An adaptive sliding mode control is proposed to achieve the asymptotic stability of the differential inclusion systems. The convergence conditions of the dynamics of sliding mode to zero and adaptive rules to update the control signal are derived. A new Lyapunov analysis-based theorem is formulated that proves the states' convergence to zero. Finally, the efficiency of the proposed control is illustrated via simulations of a numerical linear polytopic differential inclusion system.</description><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1538654288</identifier><identifier>EISBN: 9781538654286</identifier><identifier>DOI: 10.23919/ACC.2018.8431560</identifier><language>eng</language><publisher>AACC</publisher><subject>Adaptation models ; Adaptive systems ; Asymptotic stability ; Lyapunov methods ; Manifolds ; Sliding mode control ; Uncertainty</subject><ispartof>2018 Annual American Control Conference (ACC), 2018, p.5327-5331</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8431560$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8431560$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nateghi, Shamila</creatorcontrib><creatorcontrib>Shtessel, Y.</creatorcontrib><title>Robust Stabilization of Linear Differential Inclusion Using Adaptive Sliding Mode Control</title><title>2018 Annual American Control Conference (ACC)</title><addtitle>ACC</addtitle><description>Control of the linear polytopic Differential Inclusion system in the presence of bounded disturbance is studied. An adaptive sliding mode control is proposed to achieve the asymptotic stability of the differential inclusion systems. The convergence conditions of the dynamics of sliding mode to zero and adaptive rules to update the control signal are derived. A new Lyapunov analysis-based theorem is formulated that proves the states' convergence to zero. Finally, the efficiency of the proposed control is illustrated via simulations of a numerical linear polytopic differential inclusion system.</description><subject>Adaptation models</subject><subject>Adaptive systems</subject><subject>Asymptotic stability</subject><subject>Lyapunov methods</subject><subject>Manifolds</subject><subject>Sliding mode control</subject><subject>Uncertainty</subject><issn>2378-5861</issn><isbn>1538654288</isbn><isbn>9781538654286</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKAzEYRqMg2FYfQNzkBabmzz3LYdRaGBGsXbgqmVwkMs6USSro00uxqw8Oh7P4ELoBsqTMgLmrm2ZJCeil5gyEJGdoDoJpKTjV-hzNKFO6ElrCJZrn_EkIGCPJDL2_jt0hF7wptkt9-rUljQMeI27TEOyE71OMYQpDSbbH68H1h3wUtjkNH7j2dl_Sd8CbPvkjeB59wM04lGnsr9BFtH0O16ddoO3jw1vzVLUvq3VTt1UCJUqlFZegtLdOUt1RJrmAyJ3z1DAOwnLPFe2Y7lhQznDGwAfX2QicEke4YQt0-99NIYTdfkpfdvrZnW5gf9bOUWY</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Nateghi, Shamila</creator><creator>Shtessel, Y.</creator><general>AACC</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201806</creationdate><title>Robust Stabilization of Linear Differential Inclusion Using Adaptive Sliding Mode Control</title><author>Nateghi, Shamila ; Shtessel, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8746178dac628b236451f4ccd293415a4d472b38b3e7c94331decbaf1420c0493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation models</topic><topic>Adaptive systems</topic><topic>Asymptotic stability</topic><topic>Lyapunov methods</topic><topic>Manifolds</topic><topic>Sliding mode control</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Nateghi, Shamila</creatorcontrib><creatorcontrib>Shtessel, Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nateghi, Shamila</au><au>Shtessel, Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust Stabilization of Linear Differential Inclusion Using Adaptive Sliding Mode Control</atitle><btitle>2018 Annual American Control Conference (ACC)</btitle><stitle>ACC</stitle><date>2018-06</date><risdate>2018</risdate><spage>5327</spage><epage>5331</epage><pages>5327-5331</pages><eissn>2378-5861</eissn><eisbn>1538654288</eisbn><eisbn>9781538654286</eisbn><abstract>Control of the linear polytopic Differential Inclusion system in the presence of bounded disturbance is studied. An adaptive sliding mode control is proposed to achieve the asymptotic stability of the differential inclusion systems. The convergence conditions of the dynamics of sliding mode to zero and adaptive rules to update the control signal are derived. A new Lyapunov analysis-based theorem is formulated that proves the states' convergence to zero. Finally, the efficiency of the proposed control is illustrated via simulations of a numerical linear polytopic differential inclusion system.</abstract><pub>AACC</pub><doi>10.23919/ACC.2018.8431560</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2378-5861 |
ispartof | 2018 Annual American Control Conference (ACC), 2018, p.5327-5331 |
issn | 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_8431560 |
source | IEEE Xplore All Conference Series |
subjects | Adaptation models Adaptive systems Asymptotic stability Lyapunov methods Manifolds Sliding mode control Uncertainty |
title | Robust Stabilization of Linear Differential Inclusion Using Adaptive Sliding Mode Control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20Stabilization%20of%20Linear%20Differential%20Inclusion%20Using%20Adaptive%20Sliding%20Mode%20Control&rft.btitle=2018%20Annual%20American%20Control%20Conference%20(ACC)&rft.au=Nateghi,%20Shamila&rft.date=2018-06&rft.spage=5327&rft.epage=5331&rft.pages=5327-5331&rft.eissn=2378-5861&rft_id=info:doi/10.23919/ACC.2018.8431560&rft.eisbn=1538654288&rft.eisbn_list=9781538654286&rft_dat=%3Cieee_CHZPO%3E8431560%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-8746178dac628b236451f4ccd293415a4d472b38b3e7c94331decbaf1420c0493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8431560&rfr_iscdi=true |