Loading…
Receding-Horizon Multi-Objective Optimization for Disaster Response
This paper proposes a receding-horizon, multiobjective optimization approach for robot motion planning in disaster response scenarios. During a search and rescue mission, a robot is deployed in the disaster area to find and egress all victims. In doing so, multiple criteria characterize the effectiv...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5309 |
container_issue | |
container_start_page | 5304 |
container_title | |
container_volume | |
creator | Kooktae Lee Martinez, Sonia Cortes, Jorge Chen, Robert H. Milam, Mark B. |
description | This paper proposes a receding-horizon, multiobjective optimization approach for robot motion planning in disaster response scenarios. During a search and rescue mission, a robot is deployed in the disaster area to find and egress all victims. In doing so, multiple criteria characterize the effectiveness of such plan. We define three objective functions (performance, uncertainty about victim locations, and uncertainty about the environment) and formulate a multi-objective optimization problem employing a combined weighted-sum and ε-constraint method. To handle dynamic scenarios, we employ a receding-horizon approach that allows to dynamically adapt the ε constraint. We illustrate the effectiveness of the proposed method via simulations. |
doi_str_mv | 10.23919/ACC.2018.8431804 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8431804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8431804</ieee_id><sourcerecordid>8431804</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a96a4abe343f2dc22496dfc4a89a0f685019f8ca0dda7a2950a7b3174c1e9d553</originalsourceid><addsrcrecordid>eNotj81Kw0AURkdBsK0-gLjJCyTOf2aWJWorVAJF1-Vm5o5MaZOQGQX79Bbs6lscOJyPkAdGKy4ss0_Lpqk4ZaYyUjBD5RWZMyWMVpIbc01mXNSmVEazWzJPaU8ps1bTGWm26NDH_qtcD1M8DX3x_n3IsWy7Pbocf7BoxxyP8QQ5nmEYpuI5JkgZp2KLaRz6hHfkJsAh4f1lF-Tz9eWjWZebdvXWLDdlZLXKJVgNEjoUUgTuHefSah-cBGOBBm3UuSkYB9R7qIFbRaHuBKulY2i9UmJBHv-9ERF34xSPMP3uLofFH4CeSpw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Receding-Horizon Multi-Objective Optimization for Disaster Response</title><source>IEEE Xplore All Conference Series</source><creator>Kooktae Lee ; Martinez, Sonia ; Cortes, Jorge ; Chen, Robert H. ; Milam, Mark B.</creator><creatorcontrib>Kooktae Lee ; Martinez, Sonia ; Cortes, Jorge ; Chen, Robert H. ; Milam, Mark B.</creatorcontrib><description>This paper proposes a receding-horizon, multiobjective optimization approach for robot motion planning in disaster response scenarios. During a search and rescue mission, a robot is deployed in the disaster area to find and egress all victims. In doing so, multiple criteria characterize the effectiveness of such plan. We define three objective functions (performance, uncertainty about victim locations, and uncertainty about the environment) and formulate a multi-objective optimization problem employing a combined weighted-sum and ε-constraint method. To handle dynamic scenarios, we employ a receding-horizon approach that allows to dynamically adapt the ε constraint. We illustrate the effectiveness of the proposed method via simulations.</description><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1538654288</identifier><identifier>EISBN: 9781538654286</identifier><identifier>DOI: 10.23919/ACC.2018.8431804</identifier><language>eng</language><publisher>AACC</publisher><subject>Optimization ; Robot kinematics ; Robot sensing systems ; Trajectory ; Uncertainty</subject><ispartof>2018 Annual American Control Conference (ACC), 2018, p.5304-5309</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8431804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8431804$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kooktae Lee</creatorcontrib><creatorcontrib>Martinez, Sonia</creatorcontrib><creatorcontrib>Cortes, Jorge</creatorcontrib><creatorcontrib>Chen, Robert H.</creatorcontrib><creatorcontrib>Milam, Mark B.</creatorcontrib><title>Receding-Horizon Multi-Objective Optimization for Disaster Response</title><title>2018 Annual American Control Conference (ACC)</title><addtitle>ACC</addtitle><description>This paper proposes a receding-horizon, multiobjective optimization approach for robot motion planning in disaster response scenarios. During a search and rescue mission, a robot is deployed in the disaster area to find and egress all victims. In doing so, multiple criteria characterize the effectiveness of such plan. We define three objective functions (performance, uncertainty about victim locations, and uncertainty about the environment) and formulate a multi-objective optimization problem employing a combined weighted-sum and ε-constraint method. To handle dynamic scenarios, we employ a receding-horizon approach that allows to dynamically adapt the ε constraint. We illustrate the effectiveness of the proposed method via simulations.</description><subject>Optimization</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><subject>Trajectory</subject><subject>Uncertainty</subject><issn>2378-5861</issn><isbn>1538654288</isbn><isbn>9781538654286</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AURkdBsK0-gLjJCyTOf2aWJWorVAJF1-Vm5o5MaZOQGQX79Bbs6lscOJyPkAdGKy4ss0_Lpqk4ZaYyUjBD5RWZMyWMVpIbc01mXNSmVEazWzJPaU8ps1bTGWm26NDH_qtcD1M8DX3x_n3IsWy7Pbocf7BoxxyP8QQ5nmEYpuI5JkgZp2KLaRz6hHfkJsAh4f1lF-Tz9eWjWZebdvXWLDdlZLXKJVgNEjoUUgTuHefSah-cBGOBBm3UuSkYB9R7qIFbRaHuBKulY2i9UmJBHv-9ERF34xSPMP3uLofFH4CeSpw</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Kooktae Lee</creator><creator>Martinez, Sonia</creator><creator>Cortes, Jorge</creator><creator>Chen, Robert H.</creator><creator>Milam, Mark B.</creator><general>AACC</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201806</creationdate><title>Receding-Horizon Multi-Objective Optimization for Disaster Response</title><author>Kooktae Lee ; Martinez, Sonia ; Cortes, Jorge ; Chen, Robert H. ; Milam, Mark B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a96a4abe343f2dc22496dfc4a89a0f685019f8ca0dda7a2950a7b3174c1e9d553</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Optimization</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><topic>Trajectory</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Kooktae Lee</creatorcontrib><creatorcontrib>Martinez, Sonia</creatorcontrib><creatorcontrib>Cortes, Jorge</creatorcontrib><creatorcontrib>Chen, Robert H.</creatorcontrib><creatorcontrib>Milam, Mark B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kooktae Lee</au><au>Martinez, Sonia</au><au>Cortes, Jorge</au><au>Chen, Robert H.</au><au>Milam, Mark B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Receding-Horizon Multi-Objective Optimization for Disaster Response</atitle><btitle>2018 Annual American Control Conference (ACC)</btitle><stitle>ACC</stitle><date>2018-06</date><risdate>2018</risdate><spage>5304</spage><epage>5309</epage><pages>5304-5309</pages><eissn>2378-5861</eissn><eisbn>1538654288</eisbn><eisbn>9781538654286</eisbn><abstract>This paper proposes a receding-horizon, multiobjective optimization approach for robot motion planning in disaster response scenarios. During a search and rescue mission, a robot is deployed in the disaster area to find and egress all victims. In doing so, multiple criteria characterize the effectiveness of such plan. We define three objective functions (performance, uncertainty about victim locations, and uncertainty about the environment) and formulate a multi-objective optimization problem employing a combined weighted-sum and ε-constraint method. To handle dynamic scenarios, we employ a receding-horizon approach that allows to dynamically adapt the ε constraint. We illustrate the effectiveness of the proposed method via simulations.</abstract><pub>AACC</pub><doi>10.23919/ACC.2018.8431804</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2378-5861 |
ispartof | 2018 Annual American Control Conference (ACC), 2018, p.5304-5309 |
issn | 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_8431804 |
source | IEEE Xplore All Conference Series |
subjects | Optimization Robot kinematics Robot sensing systems Trajectory Uncertainty |
title | Receding-Horizon Multi-Objective Optimization for Disaster Response |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Receding-Horizon%20Multi-Objective%20Optimization%20for%20Disaster%20Response&rft.btitle=2018%20Annual%20American%20Control%20Conference%20(ACC)&rft.au=Kooktae%20Lee&rft.date=2018-06&rft.spage=5304&rft.epage=5309&rft.pages=5304-5309&rft.eissn=2378-5861&rft_id=info:doi/10.23919/ACC.2018.8431804&rft.eisbn=1538654288&rft.eisbn_list=9781538654286&rft_dat=%3Cieee_CHZPO%3E8431804%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-a96a4abe343f2dc22496dfc4a89a0f685019f8ca0dda7a2950a7b3174c1e9d553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8431804&rfr_iscdi=true |