Loading…
3-D Human Pose Estimation Using Cascade of Multiple Neural Networks
Estimating three-dimensional (3-D) human poses from a given two-dimensional (2-D) shape is still an inherently ill-posed problem in computer vision. This paper proposes a method called cascade of multiple neural networks (CMNN) to solve this problem in following two steps: 1) create the initial esti...
Saved in:
Published in: | IEEE transactions on industrial informatics 2019-04, Vol.15 (4), p.2064-2072 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Estimating three-dimensional (3-D) human poses from a given two-dimensional (2-D) shape is still an inherently ill-posed problem in computer vision. This paper proposes a method called cascade of multiple neural networks (CMNN) to solve this problem in following two steps: 1) create the initial estimated 3-D shape using the Zhou et al. method with a small number of basis shapes and 2) make this initial shape more alike to the original shape by using the CMNN. In comparing to existing works, the proposed method shows a significant outperformance in both accuracy and processing time. This paper also introduces a new system called Human3D that can estimate the 3-D pose of all people in a single RGB image. This system comprises two part: convolution pose machine (CPM) for estimating 2-D poses of all people in an RGB image and CMNN for reconstructing 3-D poses of them from outputs of the CPM. |
---|---|
ISSN: | 1551-3203 1941-0050 |
DOI: | 10.1109/TII.2018.2864824 |