Loading…

Deep-Neural-Network-Based Sinogram Synthesis for Sparse-View CT Image Reconstruction

Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is perhaps the most actively explored technology with advanced image reconstruction algorithms. Sparse data sampling is another viable option t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on radiation and plasma medical sciences 2019-03, Vol.3 (2), p.109-119
Main Authors: Lee, Hoyeon, Lee, Jongha, Kim, Hyeongseok, Cho, Byungchul, Cho, Seungryong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c454t-71381a242932c9aa7f4853657849161e2ff5ed1ccd24ad9d128628e1288a67293
cites cdi_FETCH-LOGICAL-c454t-71381a242932c9aa7f4853657849161e2ff5ed1ccd24ad9d128628e1288a67293
container_end_page 119
container_issue 2
container_start_page 109
container_title IEEE transactions on radiation and plasma medical sciences
container_volume 3
creator Lee, Hoyeon
Lee, Jongha
Kim, Hyeongseok
Cho, Byungchul
Cho, Seungryong
description Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is perhaps the most actively explored technology with advanced image reconstruction algorithms. Sparse data sampling is another viable option to the low-dose CT, and sparse-view CT has been particularly of interest among the researchers in CT community. Since analytic image reconstruction algorithms would lead to severe image artifacts, various iterative algorithms have been developed for reconstructing images from sparsely view-sampled projection data. However, iterative algorithms take much longer computation time than the analytic algorithms, and images are usually prone to different types of image artifacts that heavily depend on the reconstruction parameters. Interpolation methods have also been utilized to fill the missing data in the sinogram of sparse-view CT thus providing synthetically full data for analytic image reconstruction. In this paper, we introduce a deep-neural-network-enabled sinogram synthesis method for sparse-view CT, and show its outperformance to the existing interpolation methods and also to the iterative image reconstruction approach.
doi_str_mv 10.1109/TRPMS.2018.2867611
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8452958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8452958</ieee_id><sourcerecordid>2296111649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-71381a242932c9aa7f4853657849161e2ff5ed1ccd24ad9d128628e1288a67293</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EElXpD8AmEusUj2Mn9hIKhUrloSawtaxkUlLaONiJqv49Ka26urO4Z0ZzCLkGOgag6i5bfLymY0ZBjpmMkxjgjAwYj1WYRDQ6P80Al2Tk_YpSColkiosByR4Rm_ANO2fWfbRb637CB-OxCNKqtktnNkG6q9tv9JUPSuuCtDHOY_hV4TaYZMFsY5YYLDC3tW9dl7eVra_IRWnWHkfHHJLP6VM2eQnn78-zyf08zLngbZhAJMEwzlTEcmVMUnIpolgkkiuIAVlZCiwgzwvGTaEK6L9jEvuQJk56akhuD3sbZ3879K1e2c7V_UnNmOo9QMz3LXZo5c5677DUjas2xu00UL0XqP8F6r1AfRTYQzcHqELEEyC5YErI6A8Eh2sD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296111649</pqid></control><display><type>article</type><title>Deep-Neural-Network-Based Sinogram Synthesis for Sparse-View CT Image Reconstruction</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lee, Hoyeon ; Lee, Jongha ; Kim, Hyeongseok ; Cho, Byungchul ; Cho, Seungryong</creator><creatorcontrib>Lee, Hoyeon ; Lee, Jongha ; Kim, Hyeongseok ; Cho, Byungchul ; Cho, Seungryong</creatorcontrib><description>Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is perhaps the most actively explored technology with advanced image reconstruction algorithms. Sparse data sampling is another viable option to the low-dose CT, and sparse-view CT has been particularly of interest among the researchers in CT community. Since analytic image reconstruction algorithms would lead to severe image artifacts, various iterative algorithms have been developed for reconstructing images from sparsely view-sampled projection data. However, iterative algorithms take much longer computation time than the analytic algorithms, and images are usually prone to different types of image artifacts that heavily depend on the reconstruction parameters. Interpolation methods have also been utilized to fill the missing data in the sinogram of sparse-view CT thus providing synthetically full data for analytic image reconstruction. In this paper, we introduce a deep-neural-network-enabled sinogram synthesis method for sparse-view CT, and show its outperformance to the existing interpolation methods and also to the iterative image reconstruction approach.</description><identifier>ISSN: 2469-7311</identifier><identifier>EISSN: 2469-7303</identifier><identifier>DOI: 10.1109/TRPMS.2018.2867611</identifier><identifier>CODEN: ITRPFI</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Commercialization ; Computed tomography ; Convolution ; Data sampling ; Deep learning ; Image processing ; Image reconstruction ; Interpolation ; Iterative algorithms ; Iterative methods ; low-dose computed tomography (CT) ; Machine learning ; Mathematical analysis ; Medical imaging ; Missing data ; Neural networks ; Scanners ; sparse-view CT ; Synthesis ; Training ; view interpolation</subject><ispartof>IEEE transactions on radiation and plasma medical sciences, 2019-03, Vol.3 (2), p.109-119</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-71381a242932c9aa7f4853657849161e2ff5ed1ccd24ad9d128628e1288a67293</citedby><cites>FETCH-LOGICAL-c454t-71381a242932c9aa7f4853657849161e2ff5ed1ccd24ad9d128628e1288a67293</cites><orcidid>0000-0002-1568-6733 ; 0000-0003-3871-7114 ; 0000-0002-9409-3628 ; 0000-0002-1165-1509 ; 0000-0001-5666-0129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8452958$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lee, Hoyeon</creatorcontrib><creatorcontrib>Lee, Jongha</creatorcontrib><creatorcontrib>Kim, Hyeongseok</creatorcontrib><creatorcontrib>Cho, Byungchul</creatorcontrib><creatorcontrib>Cho, Seungryong</creatorcontrib><title>Deep-Neural-Network-Based Sinogram Synthesis for Sparse-View CT Image Reconstruction</title><title>IEEE transactions on radiation and plasma medical sciences</title><addtitle>TRPMS</addtitle><description>Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is perhaps the most actively explored technology with advanced image reconstruction algorithms. Sparse data sampling is another viable option to the low-dose CT, and sparse-view CT has been particularly of interest among the researchers in CT community. Since analytic image reconstruction algorithms would lead to severe image artifacts, various iterative algorithms have been developed for reconstructing images from sparsely view-sampled projection data. However, iterative algorithms take much longer computation time than the analytic algorithms, and images are usually prone to different types of image artifacts that heavily depend on the reconstruction parameters. Interpolation methods have also been utilized to fill the missing data in the sinogram of sparse-view CT thus providing synthetically full data for analytic image reconstruction. In this paper, we introduce a deep-neural-network-enabled sinogram synthesis method for sparse-view CT, and show its outperformance to the existing interpolation methods and also to the iterative image reconstruction approach.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Commercialization</subject><subject>Computed tomography</subject><subject>Convolution</subject><subject>Data sampling</subject><subject>Deep learning</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Interpolation</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>low-dose computed tomography (CT)</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Medical imaging</subject><subject>Missing data</subject><subject>Neural networks</subject><subject>Scanners</subject><subject>sparse-view CT</subject><subject>Synthesis</subject><subject>Training</subject><subject>view interpolation</subject><issn>2469-7311</issn><issn>2469-7303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kMtOwzAQRS0EElXpD8AmEusUj2Mn9hIKhUrloSawtaxkUlLaONiJqv49Ka26urO4Z0ZzCLkGOgag6i5bfLymY0ZBjpmMkxjgjAwYj1WYRDQ6P80Al2Tk_YpSColkiosByR4Rm_ANO2fWfbRb637CB-OxCNKqtktnNkG6q9tv9JUPSuuCtDHOY_hV4TaYZMFsY5YYLDC3tW9dl7eVra_IRWnWHkfHHJLP6VM2eQnn78-zyf08zLngbZhAJMEwzlTEcmVMUnIpolgkkiuIAVlZCiwgzwvGTaEK6L9jEvuQJk56akhuD3sbZ3879K1e2c7V_UnNmOo9QMz3LXZo5c5677DUjas2xu00UL0XqP8F6r1AfRTYQzcHqELEEyC5YErI6A8Eh2sD</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Lee, Hoyeon</creator><creator>Lee, Jongha</creator><creator>Kim, Hyeongseok</creator><creator>Cho, Byungchul</creator><creator>Cho, Seungryong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-1568-6733</orcidid><orcidid>https://orcid.org/0000-0003-3871-7114</orcidid><orcidid>https://orcid.org/0000-0002-9409-3628</orcidid><orcidid>https://orcid.org/0000-0002-1165-1509</orcidid><orcidid>https://orcid.org/0000-0001-5666-0129</orcidid></search><sort><creationdate>20190301</creationdate><title>Deep-Neural-Network-Based Sinogram Synthesis for Sparse-View CT Image Reconstruction</title><author>Lee, Hoyeon ; Lee, Jongha ; Kim, Hyeongseok ; Cho, Byungchul ; Cho, Seungryong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-71381a242932c9aa7f4853657849161e2ff5ed1ccd24ad9d128628e1288a67293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Commercialization</topic><topic>Computed tomography</topic><topic>Convolution</topic><topic>Data sampling</topic><topic>Deep learning</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Interpolation</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>low-dose computed tomography (CT)</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Medical imaging</topic><topic>Missing data</topic><topic>Neural networks</topic><topic>Scanners</topic><topic>sparse-view CT</topic><topic>Synthesis</topic><topic>Training</topic><topic>view interpolation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hoyeon</creatorcontrib><creatorcontrib>Lee, Jongha</creatorcontrib><creatorcontrib>Kim, Hyeongseok</creatorcontrib><creatorcontrib>Cho, Byungchul</creatorcontrib><creatorcontrib>Cho, Seungryong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on radiation and plasma medical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hoyeon</au><au>Lee, Jongha</au><au>Kim, Hyeongseok</au><au>Cho, Byungchul</au><au>Cho, Seungryong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-Neural-Network-Based Sinogram Synthesis for Sparse-View CT Image Reconstruction</atitle><jtitle>IEEE transactions on radiation and plasma medical sciences</jtitle><stitle>TRPMS</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>3</volume><issue>2</issue><spage>109</spage><epage>119</epage><pages>109-119</pages><issn>2469-7311</issn><eissn>2469-7303</eissn><coden>ITRPFI</coden><abstract>Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is perhaps the most actively explored technology with advanced image reconstruction algorithms. Sparse data sampling is another viable option to the low-dose CT, and sparse-view CT has been particularly of interest among the researchers in CT community. Since analytic image reconstruction algorithms would lead to severe image artifacts, various iterative algorithms have been developed for reconstructing images from sparsely view-sampled projection data. However, iterative algorithms take much longer computation time than the analytic algorithms, and images are usually prone to different types of image artifacts that heavily depend on the reconstruction parameters. Interpolation methods have also been utilized to fill the missing data in the sinogram of sparse-view CT thus providing synthetically full data for analytic image reconstruction. In this paper, we introduce a deep-neural-network-enabled sinogram synthesis method for sparse-view CT, and show its outperformance to the existing interpolation methods and also to the iterative image reconstruction approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TRPMS.2018.2867611</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1568-6733</orcidid><orcidid>https://orcid.org/0000-0003-3871-7114</orcidid><orcidid>https://orcid.org/0000-0002-9409-3628</orcidid><orcidid>https://orcid.org/0000-0002-1165-1509</orcidid><orcidid>https://orcid.org/0000-0001-5666-0129</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-7311
ispartof IEEE transactions on radiation and plasma medical sciences, 2019-03, Vol.3 (2), p.109-119
issn 2469-7311
2469-7303
language eng
recordid cdi_ieee_primary_8452958
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Artificial neural networks
Commercialization
Computed tomography
Convolution
Data sampling
Deep learning
Image processing
Image reconstruction
Interpolation
Iterative algorithms
Iterative methods
low-dose computed tomography (CT)
Machine learning
Mathematical analysis
Medical imaging
Missing data
Neural networks
Scanners
sparse-view CT
Synthesis
Training
view interpolation
title Deep-Neural-Network-Based Sinogram Synthesis for Sparse-View CT Image Reconstruction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-Neural-Network-Based%20Sinogram%20Synthesis%20for%20Sparse-View%20CT%20Image%20Reconstruction&rft.jtitle=IEEE%20transactions%20on%20radiation%20and%20plasma%20medical%20sciences&rft.au=Lee,%20Hoyeon&rft.date=2019-03-01&rft.volume=3&rft.issue=2&rft.spage=109&rft.epage=119&rft.pages=109-119&rft.issn=2469-7311&rft.eissn=2469-7303&rft.coden=ITRPFI&rft_id=info:doi/10.1109/TRPMS.2018.2867611&rft_dat=%3Cproquest_ieee_%3E2296111649%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-71381a242932c9aa7f4853657849161e2ff5ed1ccd24ad9d128628e1288a67293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2296111649&rft_id=info:pmid/&rft_ieee_id=8452958&rfr_iscdi=true