Loading…

Gait Event Detection of a Lower Extremity Exoskeleton Robot by an Intelligent IMU

To control an exoskeleton robot, gait event (phase) of the robot needs to be identified. This paper presents a novel gait event detection method for a lower extremity exoskeleton robot based on an intelligent inertial measurement unit (iIMU). The iIMU is designed as a gait monitor to independently a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2018-12, Vol.18 (23), p.9728-9735
Main Authors: Ding, Shuo, Ouyang, Xiaoping, Liu, Tao, Li, Zhihao, Yang, Huayong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To control an exoskeleton robot, gait event (phase) of the robot needs to be identified. This paper presents a novel gait event detection method for a lower extremity exoskeleton robot based on an intelligent inertial measurement unit (iIMU). The iIMU is designed as a gait monitor to independently accomplish data sampling, data processing, and wireless transmission. It also has good portability that can be easily attached on the surface of a shoe. Moreover, an online detection algorithm is proposed to detect the gait events by local search windows and fixed thresholds, resulting in a minimal time delay and small computational burden. The accuracy and detection rate of the iIMU are experimentally verified by 10 healthy subjects walking on a force plate and treadmill. The mean time errors of heel-strike and toe-off detection are -10 and 19 ms when compared to the force plate. Gait events of a total 478 steps, collected from a treadmill with various walking speeds, are all detected. When applied to a lower extremity exoskeleton robot, the iIMU successfully detects the gait events of the human-robot synchronous walk.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2018.2871328