Loading…

Gait Event Detection of a Lower Extremity Exoskeleton Robot by an Intelligent IMU

To control an exoskeleton robot, gait event (phase) of the robot needs to be identified. This paper presents a novel gait event detection method for a lower extremity exoskeleton robot based on an intelligent inertial measurement unit (iIMU). The iIMU is designed as a gait monitor to independently a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2018-12, Vol.18 (23), p.9728-9735
Main Authors: Ding, Shuo, Ouyang, Xiaoping, Liu, Tao, Li, Zhihao, Yang, Huayong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-ec9dd5c660efffa41e53052f02b828d88fc2e10ecdda8e6426db58deae994dc83
cites cdi_FETCH-LOGICAL-c293t-ec9dd5c660efffa41e53052f02b828d88fc2e10ecdda8e6426db58deae994dc83
container_end_page 9735
container_issue 23
container_start_page 9728
container_title IEEE sensors journal
container_volume 18
creator Ding, Shuo
Ouyang, Xiaoping
Liu, Tao
Li, Zhihao
Yang, Huayong
description To control an exoskeleton robot, gait event (phase) of the robot needs to be identified. This paper presents a novel gait event detection method for a lower extremity exoskeleton robot based on an intelligent inertial measurement unit (iIMU). The iIMU is designed as a gait monitor to independently accomplish data sampling, data processing, and wireless transmission. It also has good portability that can be easily attached on the surface of a shoe. Moreover, an online detection algorithm is proposed to detect the gait events by local search windows and fixed thresholds, resulting in a minimal time delay and small computational burden. The accuracy and detection rate of the iIMU are experimentally verified by 10 healthy subjects walking on a force plate and treadmill. The mean time errors of heel-strike and toe-off detection are -10 and 19 ms when compared to the force plate. Gait events of a total 478 steps, collected from a treadmill with various walking speeds, are all detected. When applied to a lower extremity exoskeleton robot, the iIMU successfully detects the gait events of the human-robot synchronous walk.
doi_str_mv 10.1109/JSEN.2018.2871328
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8469017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8469017</ieee_id><sourcerecordid>2133750895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ec9dd5c660efffa41e53052f02b828d88fc2e10ecdda8e6426db58deae994dc83</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpfsSJvUQllKIC4lGJneU6Y5SSxsVxgf49iVqxmlmce2d0EDqnZEQpUVf3r8XjiBEqR0zmlDN5gAZUCJnQPJWH_c5JkvL8_RidtO2SEKpykQ_Q88RUERff0ER8AxFsrHyDvcMGz_wPBFz8xgCrKm67zbefUEPsgBe_8BEvttg0eNpEqOvqo6-YPsxP0ZEzdQtn-zlE89vibXyXzJ4m0_H1LLFM8ZiAVWUpbJYRcM6ZlEL3oWCOsIVkspTSWQaUgC1LIyFLWVYuhCzBgFJpaSUfostd7zr4rw20US_9JjTdSc0o57kgUomOojvKBt-2AZxeh2plwlZTontzujene3N6b67LXOwyFQD88zLNFKE5_wPOjGqI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133750895</pqid></control><display><type>article</type><title>Gait Event Detection of a Lower Extremity Exoskeleton Robot by an Intelligent IMU</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ding, Shuo ; Ouyang, Xiaoping ; Liu, Tao ; Li, Zhihao ; Yang, Huayong</creator><creatorcontrib>Ding, Shuo ; Ouyang, Xiaoping ; Liu, Tao ; Li, Zhihao ; Yang, Huayong</creatorcontrib><description>To control an exoskeleton robot, gait event (phase) of the robot needs to be identified. This paper presents a novel gait event detection method for a lower extremity exoskeleton robot based on an intelligent inertial measurement unit (iIMU). The iIMU is designed as a gait monitor to independently accomplish data sampling, data processing, and wireless transmission. It also has good portability that can be easily attached on the surface of a shoe. Moreover, an online detection algorithm is proposed to detect the gait events by local search windows and fixed thresholds, resulting in a minimal time delay and small computational burden. The accuracy and detection rate of the iIMU are experimentally verified by 10 healthy subjects walking on a force plate and treadmill. The mean time errors of heel-strike and toe-off detection are -10 and 19 ms when compared to the force plate. Gait events of a total 478 steps, collected from a treadmill with various walking speeds, are all detected. When applied to a lower extremity exoskeleton robot, the iIMU successfully detects the gait events of the human-robot synchronous walk.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2018.2871328</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; accuracy and detection rate ; Angular velocity ; Data processing ; Data sampling ; Exoskeletons ; Fitness equipment ; Foot ; foot angular velocity and acceleration ; Force plates ; Gait ; gait event detection ; Inertial platforms ; Intelligent inertial measurement unit ; Legged locomotion ; lower extremity exoskeleton robot ; Robot control ; Robots ; Sensors ; Time lag ; Walking ; Windows (intervals)</subject><ispartof>IEEE sensors journal, 2018-12, Vol.18 (23), p.9728-9735</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ec9dd5c660efffa41e53052f02b828d88fc2e10ecdda8e6426db58deae994dc83</citedby><cites>FETCH-LOGICAL-c293t-ec9dd5c660efffa41e53052f02b828d88fc2e10ecdda8e6426db58deae994dc83</cites><orcidid>0000-0002-2090-7123 ; 0000-0002-2797-0264 ; 0000-0002-7814-0121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8469017$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ding, Shuo</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Li, Zhihao</creatorcontrib><creatorcontrib>Yang, Huayong</creatorcontrib><title>Gait Event Detection of a Lower Extremity Exoskeleton Robot by an Intelligent IMU</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>To control an exoskeleton robot, gait event (phase) of the robot needs to be identified. This paper presents a novel gait event detection method for a lower extremity exoskeleton robot based on an intelligent inertial measurement unit (iIMU). The iIMU is designed as a gait monitor to independently accomplish data sampling, data processing, and wireless transmission. It also has good portability that can be easily attached on the surface of a shoe. Moreover, an online detection algorithm is proposed to detect the gait events by local search windows and fixed thresholds, resulting in a minimal time delay and small computational burden. The accuracy and detection rate of the iIMU are experimentally verified by 10 healthy subjects walking on a force plate and treadmill. The mean time errors of heel-strike and toe-off detection are -10 and 19 ms when compared to the force plate. Gait events of a total 478 steps, collected from a treadmill with various walking speeds, are all detected. When applied to a lower extremity exoskeleton robot, the iIMU successfully detects the gait events of the human-robot synchronous walk.</description><subject>Acceleration</subject><subject>accuracy and detection rate</subject><subject>Angular velocity</subject><subject>Data processing</subject><subject>Data sampling</subject><subject>Exoskeletons</subject><subject>Fitness equipment</subject><subject>Foot</subject><subject>foot angular velocity and acceleration</subject><subject>Force plates</subject><subject>Gait</subject><subject>gait event detection</subject><subject>Inertial platforms</subject><subject>Intelligent inertial measurement unit</subject><subject>Legged locomotion</subject><subject>lower extremity exoskeleton robot</subject><subject>Robot control</subject><subject>Robots</subject><subject>Sensors</subject><subject>Time lag</subject><subject>Walking</subject><subject>Windows (intervals)</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpfsSJvUQllKIC4lGJneU6Y5SSxsVxgf49iVqxmlmce2d0EDqnZEQpUVf3r8XjiBEqR0zmlDN5gAZUCJnQPJWH_c5JkvL8_RidtO2SEKpykQ_Q88RUERff0ER8AxFsrHyDvcMGz_wPBFz8xgCrKm67zbefUEPsgBe_8BEvttg0eNpEqOvqo6-YPsxP0ZEzdQtn-zlE89vibXyXzJ4m0_H1LLFM8ZiAVWUpbJYRcM6ZlEL3oWCOsIVkspTSWQaUgC1LIyFLWVYuhCzBgFJpaSUfostd7zr4rw20US_9JjTdSc0o57kgUomOojvKBt-2AZxeh2plwlZTontzujene3N6b67LXOwyFQD88zLNFKE5_wPOjGqI</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Ding, Shuo</creator><creator>Ouyang, Xiaoping</creator><creator>Liu, Tao</creator><creator>Li, Zhihao</creator><creator>Yang, Huayong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2090-7123</orcidid><orcidid>https://orcid.org/0000-0002-2797-0264</orcidid><orcidid>https://orcid.org/0000-0002-7814-0121</orcidid></search><sort><creationdate>20181201</creationdate><title>Gait Event Detection of a Lower Extremity Exoskeleton Robot by an Intelligent IMU</title><author>Ding, Shuo ; Ouyang, Xiaoping ; Liu, Tao ; Li, Zhihao ; Yang, Huayong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ec9dd5c660efffa41e53052f02b828d88fc2e10ecdda8e6426db58deae994dc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acceleration</topic><topic>accuracy and detection rate</topic><topic>Angular velocity</topic><topic>Data processing</topic><topic>Data sampling</topic><topic>Exoskeletons</topic><topic>Fitness equipment</topic><topic>Foot</topic><topic>foot angular velocity and acceleration</topic><topic>Force plates</topic><topic>Gait</topic><topic>gait event detection</topic><topic>Inertial platforms</topic><topic>Intelligent inertial measurement unit</topic><topic>Legged locomotion</topic><topic>lower extremity exoskeleton robot</topic><topic>Robot control</topic><topic>Robots</topic><topic>Sensors</topic><topic>Time lag</topic><topic>Walking</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Shuo</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Li, Zhihao</creatorcontrib><creatorcontrib>Yang, Huayong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Shuo</au><au>Ouyang, Xiaoping</au><au>Liu, Tao</au><au>Li, Zhihao</au><au>Yang, Huayong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gait Event Detection of a Lower Extremity Exoskeleton Robot by an Intelligent IMU</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>18</volume><issue>23</issue><spage>9728</spage><epage>9735</epage><pages>9728-9735</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>To control an exoskeleton robot, gait event (phase) of the robot needs to be identified. This paper presents a novel gait event detection method for a lower extremity exoskeleton robot based on an intelligent inertial measurement unit (iIMU). The iIMU is designed as a gait monitor to independently accomplish data sampling, data processing, and wireless transmission. It also has good portability that can be easily attached on the surface of a shoe. Moreover, an online detection algorithm is proposed to detect the gait events by local search windows and fixed thresholds, resulting in a minimal time delay and small computational burden. The accuracy and detection rate of the iIMU are experimentally verified by 10 healthy subjects walking on a force plate and treadmill. The mean time errors of heel-strike and toe-off detection are -10 and 19 ms when compared to the force plate. Gait events of a total 478 steps, collected from a treadmill with various walking speeds, are all detected. When applied to a lower extremity exoskeleton robot, the iIMU successfully detects the gait events of the human-robot synchronous walk.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2018.2871328</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2090-7123</orcidid><orcidid>https://orcid.org/0000-0002-2797-0264</orcidid><orcidid>https://orcid.org/0000-0002-7814-0121</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2018-12, Vol.18 (23), p.9728-9735
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_8469017
source IEEE Electronic Library (IEL) Journals
subjects Acceleration
accuracy and detection rate
Angular velocity
Data processing
Data sampling
Exoskeletons
Fitness equipment
Foot
foot angular velocity and acceleration
Force plates
Gait
gait event detection
Inertial platforms
Intelligent inertial measurement unit
Legged locomotion
lower extremity exoskeleton robot
Robot control
Robots
Sensors
Time lag
Walking
Windows (intervals)
title Gait Event Detection of a Lower Extremity Exoskeleton Robot by an Intelligent IMU
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gait%20Event%20Detection%20of%20a%20Lower%20Extremity%20Exoskeleton%20Robot%20by%20an%20Intelligent%20IMU&rft.jtitle=IEEE%20sensors%20journal&rft.au=Ding,%20Shuo&rft.date=2018-12-01&rft.volume=18&rft.issue=23&rft.spage=9728&rft.epage=9735&rft.pages=9728-9735&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2018.2871328&rft_dat=%3Cproquest_ieee_%3E2133750895%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-ec9dd5c660efffa41e53052f02b828d88fc2e10ecdda8e6426db58deae994dc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2133750895&rft_id=info:pmid/&rft_ieee_id=8469017&rfr_iscdi=true