Loading…
Introduction to the Special Issue: Data-Driven Approaches to Research and Teaching in Professional and Technical Communication
The quest to understand the nuances of professional communication using computational tools have continued since, and many researchers in our field have embraced the new interdisciplinary approach now known as data science. Our quick metadata search on the journals and conference proceedings in tech...
Saved in:
Published in: | IEEE transactions on professional communication 2018-12, Vol.61 (4), p.352-355 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-834c46b03a55248b2a051b4712db99c6fd193d786d6a4801fdde11778533d7e43 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-834c46b03a55248b2a051b4712db99c6fd193d786d6a4801fdde11778533d7e43 |
container_end_page | 355 |
container_issue | 4 |
container_start_page | 352 |
container_title | IEEE transactions on professional communication |
container_volume | 61 |
creator | Boettger, Ryan K. Ishizaki, Suguru |
description | The quest to understand the nuances of professional communication using computational tools have continued since, and many researchers in our field have embraced the new interdisciplinary approach now known as data science. Our quick metadata search on the journals and conference proceedings in technical and professional communication (TPC) revealed an increasing number of articles associated with terms commonly used in data science (e.g., big data, content analysis, text mining, sentiment analysis, topic modeling, network analysis) originating from numerous disciplines (e.g., corpus linguistics, computational linguistics, artificial intelligence, statistics, business analytics). Yet, the field of TPC is just beginning to embrace the power of data-driven approaches. This special issue extends Orr’s work by taking a snapshot of current work in data-driven approaches to the study of TPC. |
doi_str_mv | 10.1109/TPC.2018.2870547 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8482472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8482472</ieee_id><sourcerecordid>2137556361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-834c46b03a55248b2a051b4712db99c6fd193d786d6a4801fdde11778533d7e43</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7eBS8Bz10zTdKm3pb6tbDgouu5pOnUdtlta9IKXvztpnTxNF_vvDM8hFwDWwCw5G67SRchA7UIVcykiE_IDKRUAUjGTsmM8QgCEFyckwvndoyB8IMZ-V01vW2LwfR129C-pX2F9L1DU-s9XTk34D190L0OHmz9jQ1ddp1ttanQjeI3dKitqahuCrpF36-bT1o3dGPbEp3znt5mGpqqqY2v0vZwGMZ0vHhJzkq9d3h1jHPy8fS4TV-C9evzKl2uA8M57wPFhRFRzriWMhQqDzWTkIsYwiJPEhOVBSS8iFVURFooBmVRIEAcK8l9GwWfk9vJ13__NaDrs107WP-cy0LgsZSR5-NVbFIZ2zpnscw6Wx-0_cmAZSPlzFPORsrZkbJfuZlWakT8lyuhQhGH_A82lXi-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137556361</pqid></control><display><type>article</type><title>Introduction to the Special Issue: Data-Driven Approaches to Research and Teaching in Professional and Technical Communication</title><source>IEEE Electronic Library (IEL) Journals</source><source>Linguistics and Language Behavior Abstracts (LLBA)</source><creator>Boettger, Ryan K. ; Ishizaki, Suguru</creator><creatorcontrib>Boettger, Ryan K. ; Ishizaki, Suguru</creatorcontrib><description>The quest to understand the nuances of professional communication using computational tools have continued since, and many researchers in our field have embraced the new interdisciplinary approach now known as data science. Our quick metadata search on the journals and conference proceedings in technical and professional communication (TPC) revealed an increasing number of articles associated with terms commonly used in data science (e.g., big data, content analysis, text mining, sentiment analysis, topic modeling, network analysis) originating from numerous disciplines (e.g., corpus linguistics, computational linguistics, artificial intelligence, statistics, business analytics). Yet, the field of TPC is just beginning to embrace the power of data-driven approaches. This special issue extends Orr’s work by taking a snapshot of current work in data-driven approaches to the study of TPC.</description><identifier>ISSN: 0361-1434</identifier><identifier>EISSN: 1558-1500</identifier><identifier>DOI: 10.1109/TPC.2018.2870547</identifier><identifier>CODEN: IEPCBU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytics ; Artificial intelligence ; Big Data ; Communication ; Computation ; Computational linguistics ; Content analysis ; Corpus analysis ; Corpus linguistics ; Data analysis ; Data management ; Data mining ; Data models ; Linguistics ; Network analysis ; Professional communication ; Software ; Special issues and sections ; Technical information</subject><ispartof>IEEE transactions on professional communication, 2018-12, Vol.61 (4), p.352-355</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-834c46b03a55248b2a051b4712db99c6fd193d786d6a4801fdde11778533d7e43</citedby><cites>FETCH-LOGICAL-c333t-834c46b03a55248b2a051b4712db99c6fd193d786d6a4801fdde11778533d7e43</cites><orcidid>0000-0002-7567-5550 ; 0000-0001-7315-1916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8482472$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,31269,54796</link.rule.ids></links><search><creatorcontrib>Boettger, Ryan K.</creatorcontrib><creatorcontrib>Ishizaki, Suguru</creatorcontrib><title>Introduction to the Special Issue: Data-Driven Approaches to Research and Teaching in Professional and Technical Communication</title><title>IEEE transactions on professional communication</title><addtitle>TPC</addtitle><description>The quest to understand the nuances of professional communication using computational tools have continued since, and many researchers in our field have embraced the new interdisciplinary approach now known as data science. Our quick metadata search on the journals and conference proceedings in technical and professional communication (TPC) revealed an increasing number of articles associated with terms commonly used in data science (e.g., big data, content analysis, text mining, sentiment analysis, topic modeling, network analysis) originating from numerous disciplines (e.g., corpus linguistics, computational linguistics, artificial intelligence, statistics, business analytics). Yet, the field of TPC is just beginning to embrace the power of data-driven approaches. This special issue extends Orr’s work by taking a snapshot of current work in data-driven approaches to the study of TPC.</description><subject>Analytics</subject><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Communication</subject><subject>Computation</subject><subject>Computational linguistics</subject><subject>Content analysis</subject><subject>Corpus analysis</subject><subject>Corpus linguistics</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Data mining</subject><subject>Data models</subject><subject>Linguistics</subject><subject>Network analysis</subject><subject>Professional communication</subject><subject>Software</subject><subject>Special issues and sections</subject><subject>Technical information</subject><issn>0361-1434</issn><issn>1558-1500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7T9</sourceid><recordid>eNo9kE1LxDAQhoMouK7eBS8Bz10zTdKm3pb6tbDgouu5pOnUdtlta9IKXvztpnTxNF_vvDM8hFwDWwCw5G67SRchA7UIVcykiE_IDKRUAUjGTsmM8QgCEFyckwvndoyB8IMZ-V01vW2LwfR129C-pX2F9L1DU-s9XTk34D190L0OHmz9jQ1ddp1ttanQjeI3dKitqahuCrpF36-bT1o3dGPbEp3znt5mGpqqqY2v0vZwGMZ0vHhJzkq9d3h1jHPy8fS4TV-C9evzKl2uA8M57wPFhRFRzriWMhQqDzWTkIsYwiJPEhOVBSS8iFVURFooBmVRIEAcK8l9GwWfk9vJ13__NaDrs107WP-cy0LgsZSR5-NVbFIZ2zpnscw6Wx-0_cmAZSPlzFPORsrZkbJfuZlWakT8lyuhQhGH_A82lXi-</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Boettger, Ryan K.</creator><creator>Ishizaki, Suguru</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7T9</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7567-5550</orcidid><orcidid>https://orcid.org/0000-0001-7315-1916</orcidid></search><sort><creationdate>20181201</creationdate><title>Introduction to the Special Issue: Data-Driven Approaches to Research and Teaching in Professional and Technical Communication</title><author>Boettger, Ryan K. ; Ishizaki, Suguru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-834c46b03a55248b2a051b4712db99c6fd193d786d6a4801fdde11778533d7e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytics</topic><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Communication</topic><topic>Computation</topic><topic>Computational linguistics</topic><topic>Content analysis</topic><topic>Corpus analysis</topic><topic>Corpus linguistics</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Data mining</topic><topic>Data models</topic><topic>Linguistics</topic><topic>Network analysis</topic><topic>Professional communication</topic><topic>Software</topic><topic>Special issues and sections</topic><topic>Technical information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boettger, Ryan K.</creatorcontrib><creatorcontrib>Ishizaki, Suguru</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on professional communication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boettger, Ryan K.</au><au>Ishizaki, Suguru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introduction to the Special Issue: Data-Driven Approaches to Research and Teaching in Professional and Technical Communication</atitle><jtitle>IEEE transactions on professional communication</jtitle><stitle>TPC</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>61</volume><issue>4</issue><spage>352</spage><epage>355</epage><pages>352-355</pages><issn>0361-1434</issn><eissn>1558-1500</eissn><coden>IEPCBU</coden><abstract>The quest to understand the nuances of professional communication using computational tools have continued since, and many researchers in our field have embraced the new interdisciplinary approach now known as data science. Our quick metadata search on the journals and conference proceedings in technical and professional communication (TPC) revealed an increasing number of articles associated with terms commonly used in data science (e.g., big data, content analysis, text mining, sentiment analysis, topic modeling, network analysis) originating from numerous disciplines (e.g., corpus linguistics, computational linguistics, artificial intelligence, statistics, business analytics). Yet, the field of TPC is just beginning to embrace the power of data-driven approaches. This special issue extends Orr’s work by taking a snapshot of current work in data-driven approaches to the study of TPC.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPC.2018.2870547</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7567-5550</orcidid><orcidid>https://orcid.org/0000-0001-7315-1916</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-1434 |
ispartof | IEEE transactions on professional communication, 2018-12, Vol.61 (4), p.352-355 |
issn | 0361-1434 1558-1500 |
language | eng |
recordid | cdi_ieee_primary_8482472 |
source | IEEE Electronic Library (IEL) Journals; Linguistics and Language Behavior Abstracts (LLBA) |
subjects | Analytics Artificial intelligence Big Data Communication Computation Computational linguistics Content analysis Corpus analysis Corpus linguistics Data analysis Data management Data mining Data models Linguistics Network analysis Professional communication Software Special issues and sections Technical information |
title | Introduction to the Special Issue: Data-Driven Approaches to Research and Teaching in Professional and Technical Communication |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introduction%20to%20the%20Special%20Issue:%20Data-Driven%20Approaches%20to%20Research%20and%20Teaching%20in%20Professional%20and%20Technical%20Communication&rft.jtitle=IEEE%20transactions%20on%20professional%20communication&rft.au=Boettger,%20Ryan%20K.&rft.date=2018-12-01&rft.volume=61&rft.issue=4&rft.spage=352&rft.epage=355&rft.pages=352-355&rft.issn=0361-1434&rft.eissn=1558-1500&rft.coden=IEPCBU&rft_id=info:doi/10.1109/TPC.2018.2870547&rft_dat=%3Cproquest_ieee_%3E2137556361%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-834c46b03a55248b2a051b4712db99c6fd193d786d6a4801fdde11778533d7e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2137556361&rft_id=info:pmid/&rft_ieee_id=8482472&rfr_iscdi=true |