Loading…

Introduction to the Special Issue: Data-Driven Approaches to Research and Teaching in Professional and Technical Communication

The quest to understand the nuances of professional communication using computational tools have continued since, and many researchers in our field have embraced the new interdisciplinary approach now known as data science. Our quick metadata search on the journals and conference proceedings in tech...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on professional communication 2018-12, Vol.61 (4), p.352-355
Main Authors: Boettger, Ryan K., Ishizaki, Suguru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-834c46b03a55248b2a051b4712db99c6fd193d786d6a4801fdde11778533d7e43
cites cdi_FETCH-LOGICAL-c333t-834c46b03a55248b2a051b4712db99c6fd193d786d6a4801fdde11778533d7e43
container_end_page 355
container_issue 4
container_start_page 352
container_title IEEE transactions on professional communication
container_volume 61
creator Boettger, Ryan K.
Ishizaki, Suguru
description The quest to understand the nuances of professional communication using computational tools have continued since, and many researchers in our field have embraced the new interdisciplinary approach now known as data science. Our quick metadata search on the journals and conference proceedings in technical and professional communication (TPC) revealed an increasing number of articles associated with terms commonly used in data science (e.g., big data, content analysis, text mining, sentiment analysis, topic modeling, network analysis) originating from numerous disciplines (e.g., corpus linguistics, computational linguistics, artificial intelligence, statistics, business analytics). Yet, the field of TPC is just beginning to embrace the power of data-driven approaches. This special issue extends Orr’s work by taking a snapshot of current work in data-driven approaches to the study of TPC.
doi_str_mv 10.1109/TPC.2018.2870547
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8482472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8482472</ieee_id><sourcerecordid>2137556361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-834c46b03a55248b2a051b4712db99c6fd193d786d6a4801fdde11778533d7e43</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7eBS8Bz10zTdKm3pb6tbDgouu5pOnUdtlta9IKXvztpnTxNF_vvDM8hFwDWwCw5G67SRchA7UIVcykiE_IDKRUAUjGTsmM8QgCEFyckwvndoyB8IMZ-V01vW2LwfR129C-pX2F9L1DU-s9XTk34D190L0OHmz9jQ1ddp1ttanQjeI3dKitqahuCrpF36-bT1o3dGPbEp3znt5mGpqqqY2v0vZwGMZ0vHhJzkq9d3h1jHPy8fS4TV-C9evzKl2uA8M57wPFhRFRzriWMhQqDzWTkIsYwiJPEhOVBSS8iFVURFooBmVRIEAcK8l9GwWfk9vJ13__NaDrs107WP-cy0LgsZSR5-NVbFIZ2zpnscw6Wx-0_cmAZSPlzFPORsrZkbJfuZlWakT8lyuhQhGH_A82lXi-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137556361</pqid></control><display><type>article</type><title>Introduction to the Special Issue: Data-Driven Approaches to Research and Teaching in Professional and Technical Communication</title><source>IEEE Electronic Library (IEL) Journals</source><source>Linguistics and Language Behavior Abstracts (LLBA)</source><creator>Boettger, Ryan K. ; Ishizaki, Suguru</creator><creatorcontrib>Boettger, Ryan K. ; Ishizaki, Suguru</creatorcontrib><description>The quest to understand the nuances of professional communication using computational tools have continued since, and many researchers in our field have embraced the new interdisciplinary approach now known as data science. Our quick metadata search on the journals and conference proceedings in technical and professional communication (TPC) revealed an increasing number of articles associated with terms commonly used in data science (e.g., big data, content analysis, text mining, sentiment analysis, topic modeling, network analysis) originating from numerous disciplines (e.g., corpus linguistics, computational linguistics, artificial intelligence, statistics, business analytics). Yet, the field of TPC is just beginning to embrace the power of data-driven approaches. This special issue extends Orr’s work by taking a snapshot of current work in data-driven approaches to the study of TPC.</description><identifier>ISSN: 0361-1434</identifier><identifier>EISSN: 1558-1500</identifier><identifier>DOI: 10.1109/TPC.2018.2870547</identifier><identifier>CODEN: IEPCBU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytics ; Artificial intelligence ; Big Data ; Communication ; Computation ; Computational linguistics ; Content analysis ; Corpus analysis ; Corpus linguistics ; Data analysis ; Data management ; Data mining ; Data models ; Linguistics ; Network analysis ; Professional communication ; Software ; Special issues and sections ; Technical information</subject><ispartof>IEEE transactions on professional communication, 2018-12, Vol.61 (4), p.352-355</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-834c46b03a55248b2a051b4712db99c6fd193d786d6a4801fdde11778533d7e43</citedby><cites>FETCH-LOGICAL-c333t-834c46b03a55248b2a051b4712db99c6fd193d786d6a4801fdde11778533d7e43</cites><orcidid>0000-0002-7567-5550 ; 0000-0001-7315-1916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8482472$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,31269,54796</link.rule.ids></links><search><creatorcontrib>Boettger, Ryan K.</creatorcontrib><creatorcontrib>Ishizaki, Suguru</creatorcontrib><title>Introduction to the Special Issue: Data-Driven Approaches to Research and Teaching in Professional and Technical Communication</title><title>IEEE transactions on professional communication</title><addtitle>TPC</addtitle><description>The quest to understand the nuances of professional communication using computational tools have continued since, and many researchers in our field have embraced the new interdisciplinary approach now known as data science. Our quick metadata search on the journals and conference proceedings in technical and professional communication (TPC) revealed an increasing number of articles associated with terms commonly used in data science (e.g., big data, content analysis, text mining, sentiment analysis, topic modeling, network analysis) originating from numerous disciplines (e.g., corpus linguistics, computational linguistics, artificial intelligence, statistics, business analytics). Yet, the field of TPC is just beginning to embrace the power of data-driven approaches. This special issue extends Orr’s work by taking a snapshot of current work in data-driven approaches to the study of TPC.</description><subject>Analytics</subject><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Communication</subject><subject>Computation</subject><subject>Computational linguistics</subject><subject>Content analysis</subject><subject>Corpus analysis</subject><subject>Corpus linguistics</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Data mining</subject><subject>Data models</subject><subject>Linguistics</subject><subject>Network analysis</subject><subject>Professional communication</subject><subject>Software</subject><subject>Special issues and sections</subject><subject>Technical information</subject><issn>0361-1434</issn><issn>1558-1500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7T9</sourceid><recordid>eNo9kE1LxDAQhoMouK7eBS8Bz10zTdKm3pb6tbDgouu5pOnUdtlta9IKXvztpnTxNF_vvDM8hFwDWwCw5G67SRchA7UIVcykiE_IDKRUAUjGTsmM8QgCEFyckwvndoyB8IMZ-V01vW2LwfR129C-pX2F9L1DU-s9XTk34D190L0OHmz9jQ1ddp1ttanQjeI3dKitqahuCrpF36-bT1o3dGPbEp3znt5mGpqqqY2v0vZwGMZ0vHhJzkq9d3h1jHPy8fS4TV-C9evzKl2uA8M57wPFhRFRzriWMhQqDzWTkIsYwiJPEhOVBSS8iFVURFooBmVRIEAcK8l9GwWfk9vJ13__NaDrs107WP-cy0LgsZSR5-NVbFIZ2zpnscw6Wx-0_cmAZSPlzFPORsrZkbJfuZlWakT8lyuhQhGH_A82lXi-</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Boettger, Ryan K.</creator><creator>Ishizaki, Suguru</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7T9</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7567-5550</orcidid><orcidid>https://orcid.org/0000-0001-7315-1916</orcidid></search><sort><creationdate>20181201</creationdate><title>Introduction to the Special Issue: Data-Driven Approaches to Research and Teaching in Professional and Technical Communication</title><author>Boettger, Ryan K. ; Ishizaki, Suguru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-834c46b03a55248b2a051b4712db99c6fd193d786d6a4801fdde11778533d7e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytics</topic><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Communication</topic><topic>Computation</topic><topic>Computational linguistics</topic><topic>Content analysis</topic><topic>Corpus analysis</topic><topic>Corpus linguistics</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Data mining</topic><topic>Data models</topic><topic>Linguistics</topic><topic>Network analysis</topic><topic>Professional communication</topic><topic>Software</topic><topic>Special issues and sections</topic><topic>Technical information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boettger, Ryan K.</creatorcontrib><creatorcontrib>Ishizaki, Suguru</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on professional communication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boettger, Ryan K.</au><au>Ishizaki, Suguru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introduction to the Special Issue: Data-Driven Approaches to Research and Teaching in Professional and Technical Communication</atitle><jtitle>IEEE transactions on professional communication</jtitle><stitle>TPC</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>61</volume><issue>4</issue><spage>352</spage><epage>355</epage><pages>352-355</pages><issn>0361-1434</issn><eissn>1558-1500</eissn><coden>IEPCBU</coden><abstract>The quest to understand the nuances of professional communication using computational tools have continued since, and many researchers in our field have embraced the new interdisciplinary approach now known as data science. Our quick metadata search on the journals and conference proceedings in technical and professional communication (TPC) revealed an increasing number of articles associated with terms commonly used in data science (e.g., big data, content analysis, text mining, sentiment analysis, topic modeling, network analysis) originating from numerous disciplines (e.g., corpus linguistics, computational linguistics, artificial intelligence, statistics, business analytics). Yet, the field of TPC is just beginning to embrace the power of data-driven approaches. This special issue extends Orr’s work by taking a snapshot of current work in data-driven approaches to the study of TPC.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPC.2018.2870547</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7567-5550</orcidid><orcidid>https://orcid.org/0000-0001-7315-1916</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-1434
ispartof IEEE transactions on professional communication, 2018-12, Vol.61 (4), p.352-355
issn 0361-1434
1558-1500
language eng
recordid cdi_ieee_primary_8482472
source IEEE Electronic Library (IEL) Journals; Linguistics and Language Behavior Abstracts (LLBA)
subjects Analytics
Artificial intelligence
Big Data
Communication
Computation
Computational linguistics
Content analysis
Corpus analysis
Corpus linguistics
Data analysis
Data management
Data mining
Data models
Linguistics
Network analysis
Professional communication
Software
Special issues and sections
Technical information
title Introduction to the Special Issue: Data-Driven Approaches to Research and Teaching in Professional and Technical Communication
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introduction%20to%20the%20Special%20Issue:%20Data-Driven%20Approaches%20to%20Research%20and%20Teaching%20in%20Professional%20and%20Technical%20Communication&rft.jtitle=IEEE%20transactions%20on%20professional%20communication&rft.au=Boettger,%20Ryan%20K.&rft.date=2018-12-01&rft.volume=61&rft.issue=4&rft.spage=352&rft.epage=355&rft.pages=352-355&rft.issn=0361-1434&rft.eissn=1558-1500&rft.coden=IEPCBU&rft_id=info:doi/10.1109/TPC.2018.2870547&rft_dat=%3Cproquest_ieee_%3E2137556361%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-834c46b03a55248b2a051b4712db99c6fd193d786d6a4801fdde11778533d7e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2137556361&rft_id=info:pmid/&rft_ieee_id=8482472&rfr_iscdi=true