Loading…
Compute-Forward Multiple Access (CFMA): Practical Implementations
We present a practical strategy that aims to attain rate points on the dominant face of the multiple access channel capacity using a standard low complexity decoder. This technique is built upon recent theoretical developments of Zhu and Gastpar on compute-forward multiple access which achieves the...
Saved in:
Published in: | IEEE transactions on communications 2019-02, Vol.67 (2), p.1133-1147 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a practical strategy that aims to attain rate points on the dominant face of the multiple access channel capacity using a standard low complexity decoder. This technique is built upon recent theoretical developments of Zhu and Gastpar on compute-forward multiple access which achieves the capacity of the multiple access channel using a sequential decoder. We illustrate this strategy with off-the-shelf LDPC codes. In the first stage of decoding, the receiver first recovers a linear combination of the transmitted codewords using the sum-product algorithm (SPA). In the second stage, by using the recovered sum-of-codewords as side information, the receiver recovers one of the two codewords using a modified SPA, ultimately recovering both codewords. The main benefit of recovering the sum-of-codewords instead of the codeword itself is that it allows to attain points on the dominant face of the multiple access channel capacity without the need of rate-splitting or time sharing while maintaining a low complexity in the order of a standard point-to-point decoder. This property is also shown to be crucial for some applications, e.g., interference channels. For all the simulations with single-layer binary codes, our proposed practical strategy is shown to be within 1.7 dB of the theoretical limits, without explicit optimization on the off-the-self LDPC codes. |
---|---|
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/TCOMM.2018.2874240 |