Loading…

Compute-Forward Multiple Access (CFMA): Practical Implementations

We present a practical strategy that aims to attain rate points on the dominant face of the multiple access channel capacity using a standard low complexity decoder. This technique is built upon recent theoretical developments of Zhu and Gastpar on compute-forward multiple access which achieves the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2019-02, Vol.67 (2), p.1133-1147
Main Authors: Sula, Erixhen, Zhu, Jingge, Pastore, Adriano, Lim, Sung Hoon, Gastpar, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a practical strategy that aims to attain rate points on the dominant face of the multiple access channel capacity using a standard low complexity decoder. This technique is built upon recent theoretical developments of Zhu and Gastpar on compute-forward multiple access which achieves the capacity of the multiple access channel using a sequential decoder. We illustrate this strategy with off-the-shelf LDPC codes. In the first stage of decoding, the receiver first recovers a linear combination of the transmitted codewords using the sum-product algorithm (SPA). In the second stage, by using the recovered sum-of-codewords as side information, the receiver recovers one of the two codewords using a modified SPA, ultimately recovering both codewords. The main benefit of recovering the sum-of-codewords instead of the codeword itself is that it allows to attain points on the dominant face of the multiple access channel capacity without the need of rate-splitting or time sharing while maintaining a low complexity in the order of a standard point-to-point decoder. This property is also shown to be crucial for some applications, e.g., interference channels. For all the simulations with single-layer binary codes, our proposed practical strategy is shown to be within 1.7 dB of the theoretical limits, without explicit optimization on the off-the-self LDPC codes.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2018.2874240