Loading…
Super-Resolution Quality Assessment: Subjective Evaluation Database and Quality Index Based on Perceptual Structure Measurement
With the outstanding performance of deep learning based single image super-resolution (SISR) methods, the traditional SISR evaluation metrics (e.g., PSNR and SSIM, which measure the per-pixel differences and simple structure similarities respectively) are facing great challenges. When assessing SISR...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Wan, Wenfei Wu, Jinjian Shi, Guangming Li, Yongbo Dong, Weisheng |
description | With the outstanding performance of deep learning based single image super-resolution (SISR) methods, the traditional SISR evaluation metrics (e.g., PSNR and SSIM, which measure the per-pixel differences and simple structure similarities respectively) are facing great challenges. When assessing SISR algorithms, they generally are hardly consistent with the human visual system (HVS). According to the psychological studies, the HVS presents different sensitivities to the plain, edge and texture regions, which are difficult to be accurately identified and measured with the existing quality indexes, especially for SR images. To deal with this problem, we firstly build a SISR subjective assessment database including several major deep learning based SR methods. Then we propose a more accurate perception structure measurement and use their similarity comparisons to evaluate the SR algorithms. Experimental results on the databases demonstrate that the proposed method performs well consistent with the human visual perception. |
doi_str_mv | 10.1109/ICME.2018.8486519 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8486519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8486519</ieee_id><sourcerecordid>8486519</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a9b15b3df22724c38dc345519bd6aac43281c04425641b791e31fae2802a85eb3</originalsourceid><addsrcrecordid>eNo9kN1KAzEQhaMgWGofQLzJC2zN7ybrXa1VCy3-VMG7MslOYct2WzZJsVe-uqsW5-bAnG8OzCHkkrMh56y4no7nk6Fg3A6tsrnmxQkZFMZyLW3OjTTylPR4oXRmrP04J4MQ1qwbo1TBZI98LdIO2-wVw7ZOsdo29CVBXcUDHYWAIWywiTd0kdwafaz2SCd7qBP8kncQwUFACk35fzZtSvykt926pB3zjK3HXexMuoht8jG1SOcIodOf7AtytoI64OCoffJ-P3kbP2azp4fpeDTLKm50zKBwXDtZroQwQnlpSy-V7r51ZQ7glRSWe6aU0LnizhQcJV8BCssEWI1O9snVX26FiMtdW22gPSyPlclvn2Zh6w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Super-Resolution Quality Assessment: Subjective Evaluation Database and Quality Index Based on Perceptual Structure Measurement</title><source>IEEE Xplore All Conference Series</source><creator>Wan, Wenfei ; Wu, Jinjian ; Shi, Guangming ; Li, Yongbo ; Dong, Weisheng</creator><creatorcontrib>Wan, Wenfei ; Wu, Jinjian ; Shi, Guangming ; Li, Yongbo ; Dong, Weisheng</creatorcontrib><description>With the outstanding performance of deep learning based single image super-resolution (SISR) methods, the traditional SISR evaluation metrics (e.g., PSNR and SSIM, which measure the per-pixel differences and simple structure similarities respectively) are facing great challenges. When assessing SISR algorithms, they generally are hardly consistent with the human visual system (HVS). According to the psychological studies, the HVS presents different sensitivities to the plain, edge and texture regions, which are difficult to be accurately identified and measured with the existing quality indexes, especially for SR images. To deal with this problem, we firstly build a SISR subjective assessment database including several major deep learning based SR methods. Then we propose a more accurate perception structure measurement and use their similarity comparisons to evaluate the SR algorithms. Experimental results on the databases demonstrate that the proposed method performs well consistent with the human visual perception.</description><identifier>EISSN: 1945-788X</identifier><identifier>EISBN: 9781538617373</identifier><identifier>EISBN: 1538617374</identifier><identifier>DOI: 10.1109/ICME.2018.8486519</identifier><language>eng</language><publisher>IEEE</publisher><subject>human visual system (HVS) ; image quality assessment (IQA) ; perceptual structure measurement ; Single image super-resolution (SISR)</subject><ispartof>2018 IEEE International Conference on Multimedia and Expo (ICME), 2018, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8486519$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8486519$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wan, Wenfei</creatorcontrib><creatorcontrib>Wu, Jinjian</creatorcontrib><creatorcontrib>Shi, Guangming</creatorcontrib><creatorcontrib>Li, Yongbo</creatorcontrib><creatorcontrib>Dong, Weisheng</creatorcontrib><title>Super-Resolution Quality Assessment: Subjective Evaluation Database and Quality Index Based on Perceptual Structure Measurement</title><title>2018 IEEE International Conference on Multimedia and Expo (ICME)</title><addtitle>ICME</addtitle><description>With the outstanding performance of deep learning based single image super-resolution (SISR) methods, the traditional SISR evaluation metrics (e.g., PSNR and SSIM, which measure the per-pixel differences and simple structure similarities respectively) are facing great challenges. When assessing SISR algorithms, they generally are hardly consistent with the human visual system (HVS). According to the psychological studies, the HVS presents different sensitivities to the plain, edge and texture regions, which are difficult to be accurately identified and measured with the existing quality indexes, especially for SR images. To deal with this problem, we firstly build a SISR subjective assessment database including several major deep learning based SR methods. Then we propose a more accurate perception structure measurement and use their similarity comparisons to evaluate the SR algorithms. Experimental results on the databases demonstrate that the proposed method performs well consistent with the human visual perception.</description><subject>human visual system (HVS)</subject><subject>image quality assessment (IQA)</subject><subject>perceptual structure measurement</subject><subject>Single image super-resolution (SISR)</subject><issn>1945-788X</issn><isbn>9781538617373</isbn><isbn>1538617374</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kN1KAzEQhaMgWGofQLzJC2zN7ybrXa1VCy3-VMG7MslOYct2WzZJsVe-uqsW5-bAnG8OzCHkkrMh56y4no7nk6Fg3A6tsrnmxQkZFMZyLW3OjTTylPR4oXRmrP04J4MQ1qwbo1TBZI98LdIO2-wVw7ZOsdo29CVBXcUDHYWAIWywiTd0kdwafaz2SCd7qBP8kncQwUFACk35fzZtSvykt926pB3zjK3HXexMuoht8jG1SOcIodOf7AtytoI64OCoffJ-P3kbP2azp4fpeDTLKm50zKBwXDtZroQwQnlpSy-V7r51ZQ7glRSWe6aU0LnizhQcJV8BCssEWI1O9snVX26FiMtdW22gPSyPlclvn2Zh6w</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Wan, Wenfei</creator><creator>Wu, Jinjian</creator><creator>Shi, Guangming</creator><creator>Li, Yongbo</creator><creator>Dong, Weisheng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201807</creationdate><title>Super-Resolution Quality Assessment: Subjective Evaluation Database and Quality Index Based on Perceptual Structure Measurement</title><author>Wan, Wenfei ; Wu, Jinjian ; Shi, Guangming ; Li, Yongbo ; Dong, Weisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a9b15b3df22724c38dc345519bd6aac43281c04425641b791e31fae2802a85eb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>human visual system (HVS)</topic><topic>image quality assessment (IQA)</topic><topic>perceptual structure measurement</topic><topic>Single image super-resolution (SISR)</topic><toplevel>online_resources</toplevel><creatorcontrib>Wan, Wenfei</creatorcontrib><creatorcontrib>Wu, Jinjian</creatorcontrib><creatorcontrib>Shi, Guangming</creatorcontrib><creatorcontrib>Li, Yongbo</creatorcontrib><creatorcontrib>Dong, Weisheng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wan, Wenfei</au><au>Wu, Jinjian</au><au>Shi, Guangming</au><au>Li, Yongbo</au><au>Dong, Weisheng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Super-Resolution Quality Assessment: Subjective Evaluation Database and Quality Index Based on Perceptual Structure Measurement</atitle><btitle>2018 IEEE International Conference on Multimedia and Expo (ICME)</btitle><stitle>ICME</stitle><date>2018-07</date><risdate>2018</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>1945-788X</eissn><eisbn>9781538617373</eisbn><eisbn>1538617374</eisbn><abstract>With the outstanding performance of deep learning based single image super-resolution (SISR) methods, the traditional SISR evaluation metrics (e.g., PSNR and SSIM, which measure the per-pixel differences and simple structure similarities respectively) are facing great challenges. When assessing SISR algorithms, they generally are hardly consistent with the human visual system (HVS). According to the psychological studies, the HVS presents different sensitivities to the plain, edge and texture regions, which are difficult to be accurately identified and measured with the existing quality indexes, especially for SR images. To deal with this problem, we firstly build a SISR subjective assessment database including several major deep learning based SR methods. Then we propose a more accurate perception structure measurement and use their similarity comparisons to evaluate the SR algorithms. Experimental results on the databases demonstrate that the proposed method performs well consistent with the human visual perception.</abstract><pub>IEEE</pub><doi>10.1109/ICME.2018.8486519</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1945-788X |
ispartof | 2018 IEEE International Conference on Multimedia and Expo (ICME), 2018, p.1-6 |
issn | 1945-788X |
language | eng |
recordid | cdi_ieee_primary_8486519 |
source | IEEE Xplore All Conference Series |
subjects | human visual system (HVS) image quality assessment (IQA) perceptual structure measurement Single image super-resolution (SISR) |
title | Super-Resolution Quality Assessment: Subjective Evaluation Database and Quality Index Based on Perceptual Structure Measurement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Super-Resolution%20Quality%20Assessment:%20Subjective%20Evaluation%20Database%20and%20Quality%20Index%20Based%20on%20Perceptual%20Structure%20Measurement&rft.btitle=2018%20IEEE%20International%20Conference%20on%20Multimedia%20and%20Expo%20(ICME)&rft.au=Wan,%20Wenfei&rft.date=2018-07&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=1945-788X&rft_id=info:doi/10.1109/ICME.2018.8486519&rft.eisbn=9781538617373&rft.eisbn_list=1538617374&rft_dat=%3Cieee_CHZPO%3E8486519%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-a9b15b3df22724c38dc345519bd6aac43281c04425641b791e31fae2802a85eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8486519&rfr_iscdi=true |