Loading…

Application of Extreme Learning Machines and Echo State Networks to Seismic Multiple Removal

In seismic exploration, the collected signals not only contain the primary reflections of the subsurface structures, but also multiple reflections, which may hamper a proper and reliable analysis of the seismic image. In order to attenuate the effect of the multiple events, a predictive deconvolutio...

Full description

Saved in:
Bibliographic Details
Main Authors: Carvalho, Heitor S., Shams, Farzin, Ferrari, Rafael, Boccato, Levy
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Carvalho, Heitor S.
Shams, Farzin
Ferrari, Rafael
Boccato, Levy
description In seismic exploration, the collected signals not only contain the primary reflections of the subsurface structures, but also multiple reflections, which may hamper a proper and reliable analysis of the seismic image. In order to attenuate the effect of the multiple events, a predictive deconvolution approach can be used, which is particularly adequate for shallow water, and involves the design of a filter to predict the multiple events. In this work, we investigate the possibility of employing nonlinear structures in lieu of the usual linear filter. The chosen structures in this study refer to extreme learning machines and echo state networks, which offer an interesting trade-off between compu- tational cost and processing capability. The obtained results in the context of synthetic data clearly reveal the potential of this approach and motivate the continuity of this investigation.
doi_str_mv 10.1109/IJCNN.2018.8489620
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8489620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8489620</ieee_id><sourcerecordid>8489620</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f2c7a5856bccf23fc1e6d0a292d4c8417b9a4daa66aa4f668d9aff15c0db1c3d3</originalsourceid><addsrcrecordid>eNotkMtKAzEUQKMgWGt_QDf5gam5mUwmWZZStdJW8LETym1yY6PzYia-_l7Brg6cxVkcxi5ATAGEvVrezTebqRRgpkYZq6U4YhNbGiiEFVqA0sdsJEFDppQoT9nZMLwJIXNr8xF7mXVdFR2m2Da8DXzxnXqqia8I-yY2r3yNbh8bGjg2ni_cvuWPCRPxDaWvtn8fePozFIc6Or7-qFLsKuIPVLefWJ2zk4DVQJMDx-z5evE0v81W9zfL-WyVRSiLlAXpSixMoXfOBZkHB6S9QGmlV84oKHcWlUfUGlEFrY23GAIUTvgduNznY3b5341EtO36WGP_sz3MyH8BQc1VAg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of Extreme Learning Machines and Echo State Networks to Seismic Multiple Removal</title><source>IEEE Xplore All Conference Series</source><creator>Carvalho, Heitor S. ; Shams, Farzin ; Ferrari, Rafael ; Boccato, Levy</creator><creatorcontrib>Carvalho, Heitor S. ; Shams, Farzin ; Ferrari, Rafael ; Boccato, Levy</creatorcontrib><description>In seismic exploration, the collected signals not only contain the primary reflections of the subsurface structures, but also multiple reflections, which may hamper a proper and reliable analysis of the seismic image. In order to attenuate the effect of the multiple events, a predictive deconvolution approach can be used, which is particularly adequate for shallow water, and involves the design of a filter to predict the multiple events. In this work, we investigate the possibility of employing nonlinear structures in lieu of the usual linear filter. The chosen structures in this study refer to extreme learning machines and echo state networks, which offer an interesting trade-off between compu- tational cost and processing capability. The obtained results in the context of synthetic data clearly reveal the potential of this approach and motivate the continuity of this investigation.</description><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9781509060146</identifier><identifier>EISBN: 1509060146</identifier><identifier>DOI: 10.1109/IJCNN.2018.8489620</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deconvolution ; Distortion ; echo state networks ; extreme learning machines ; Multiple removal ; predictive deconvolution ; Sea surface ; Sensors ; Surface impedance ; Task analysis ; Transforms</subject><ispartof>2018 International Joint Conference on Neural Networks (IJCNN), 2018, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8489620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8489620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Carvalho, Heitor S.</creatorcontrib><creatorcontrib>Shams, Farzin</creatorcontrib><creatorcontrib>Ferrari, Rafael</creatorcontrib><creatorcontrib>Boccato, Levy</creatorcontrib><title>Application of Extreme Learning Machines and Echo State Networks to Seismic Multiple Removal</title><title>2018 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>In seismic exploration, the collected signals not only contain the primary reflections of the subsurface structures, but also multiple reflections, which may hamper a proper and reliable analysis of the seismic image. In order to attenuate the effect of the multiple events, a predictive deconvolution approach can be used, which is particularly adequate for shallow water, and involves the design of a filter to predict the multiple events. In this work, we investigate the possibility of employing nonlinear structures in lieu of the usual linear filter. The chosen structures in this study refer to extreme learning machines and echo state networks, which offer an interesting trade-off between compu- tational cost and processing capability. The obtained results in the context of synthetic data clearly reveal the potential of this approach and motivate the continuity of this investigation.</description><subject>Deconvolution</subject><subject>Distortion</subject><subject>echo state networks</subject><subject>extreme learning machines</subject><subject>Multiple removal</subject><subject>predictive deconvolution</subject><subject>Sea surface</subject><subject>Sensors</subject><subject>Surface impedance</subject><subject>Task analysis</subject><subject>Transforms</subject><issn>2161-4407</issn><isbn>9781509060146</isbn><isbn>1509060146</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKAzEUQKMgWGt_QDf5gam5mUwmWZZStdJW8LETym1yY6PzYia-_l7Brg6cxVkcxi5ATAGEvVrezTebqRRgpkYZq6U4YhNbGiiEFVqA0sdsJEFDppQoT9nZMLwJIXNr8xF7mXVdFR2m2Da8DXzxnXqqia8I-yY2r3yNbh8bGjg2ni_cvuWPCRPxDaWvtn8fePozFIc6Or7-qFLsKuIPVLefWJ2zk4DVQJMDx-z5evE0v81W9zfL-WyVRSiLlAXpSixMoXfOBZkHB6S9QGmlV84oKHcWlUfUGlEFrY23GAIUTvgduNznY3b5341EtO36WGP_sz3MyH8BQc1VAg</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Carvalho, Heitor S.</creator><creator>Shams, Farzin</creator><creator>Ferrari, Rafael</creator><creator>Boccato, Levy</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201807</creationdate><title>Application of Extreme Learning Machines and Echo State Networks to Seismic Multiple Removal</title><author>Carvalho, Heitor S. ; Shams, Farzin ; Ferrari, Rafael ; Boccato, Levy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f2c7a5856bccf23fc1e6d0a292d4c8417b9a4daa66aa4f668d9aff15c0db1c3d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Deconvolution</topic><topic>Distortion</topic><topic>echo state networks</topic><topic>extreme learning machines</topic><topic>Multiple removal</topic><topic>predictive deconvolution</topic><topic>Sea surface</topic><topic>Sensors</topic><topic>Surface impedance</topic><topic>Task analysis</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Heitor S.</creatorcontrib><creatorcontrib>Shams, Farzin</creatorcontrib><creatorcontrib>Ferrari, Rafael</creatorcontrib><creatorcontrib>Boccato, Levy</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carvalho, Heitor S.</au><au>Shams, Farzin</au><au>Ferrari, Rafael</au><au>Boccato, Levy</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of Extreme Learning Machines and Echo State Networks to Seismic Multiple Removal</atitle><btitle>2018 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2018-07</date><risdate>2018</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>2161-4407</eissn><eisbn>9781509060146</eisbn><eisbn>1509060146</eisbn><abstract>In seismic exploration, the collected signals not only contain the primary reflections of the subsurface structures, but also multiple reflections, which may hamper a proper and reliable analysis of the seismic image. In order to attenuate the effect of the multiple events, a predictive deconvolution approach can be used, which is particularly adequate for shallow water, and involves the design of a filter to predict the multiple events. In this work, we investigate the possibility of employing nonlinear structures in lieu of the usual linear filter. The chosen structures in this study refer to extreme learning machines and echo state networks, which offer an interesting trade-off between compu- tational cost and processing capability. The obtained results in the context of synthetic data clearly reveal the potential of this approach and motivate the continuity of this investigation.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2018.8489620</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-4407
ispartof 2018 International Joint Conference on Neural Networks (IJCNN), 2018, p.1-8
issn 2161-4407
language eng
recordid cdi_ieee_primary_8489620
source IEEE Xplore All Conference Series
subjects Deconvolution
Distortion
echo state networks
extreme learning machines
Multiple removal
predictive deconvolution
Sea surface
Sensors
Surface impedance
Task analysis
Transforms
title Application of Extreme Learning Machines and Echo State Networks to Seismic Multiple Removal
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20Extreme%20Learning%20Machines%20and%20Echo%20State%20Networks%20to%20Seismic%20Multiple%20Removal&rft.btitle=2018%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Carvalho,%20Heitor%20S.&rft.date=2018-07&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN.2018.8489620&rft.eisbn=9781509060146&rft.eisbn_list=1509060146&rft_dat=%3Cieee_CHZPO%3E8489620%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f2c7a5856bccf23fc1e6d0a292d4c8417b9a4daa66aa4f668d9aff15c0db1c3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8489620&rfr_iscdi=true