Loading…
Application of Extreme Learning Machines and Echo State Networks to Seismic Multiple Removal
In seismic exploration, the collected signals not only contain the primary reflections of the subsurface structures, but also multiple reflections, which may hamper a proper and reliable analysis of the seismic image. In order to attenuate the effect of the multiple events, a predictive deconvolutio...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Carvalho, Heitor S. Shams, Farzin Ferrari, Rafael Boccato, Levy |
description | In seismic exploration, the collected signals not only contain the primary reflections of the subsurface structures, but also multiple reflections, which may hamper a proper and reliable analysis of the seismic image. In order to attenuate the effect of the multiple events, a predictive deconvolution approach can be used, which is particularly adequate for shallow water, and involves the design of a filter to predict the multiple events. In this work, we investigate the possibility of employing nonlinear structures in lieu of the usual linear filter. The chosen structures in this study refer to extreme learning machines and echo state networks, which offer an interesting trade-off between compu- tational cost and processing capability. The obtained results in the context of synthetic data clearly reveal the potential of this approach and motivate the continuity of this investigation. |
doi_str_mv | 10.1109/IJCNN.2018.8489620 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8489620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8489620</ieee_id><sourcerecordid>8489620</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f2c7a5856bccf23fc1e6d0a292d4c8417b9a4daa66aa4f668d9aff15c0db1c3d3</originalsourceid><addsrcrecordid>eNotkMtKAzEUQKMgWGt_QDf5gam5mUwmWZZStdJW8LETym1yY6PzYia-_l7Brg6cxVkcxi5ATAGEvVrezTebqRRgpkYZq6U4YhNbGiiEFVqA0sdsJEFDppQoT9nZMLwJIXNr8xF7mXVdFR2m2Da8DXzxnXqqia8I-yY2r3yNbh8bGjg2ni_cvuWPCRPxDaWvtn8fePozFIc6Or7-qFLsKuIPVLefWJ2zk4DVQJMDx-z5evE0v81W9zfL-WyVRSiLlAXpSixMoXfOBZkHB6S9QGmlV84oKHcWlUfUGlEFrY23GAIUTvgduNznY3b5341EtO36WGP_sz3MyH8BQc1VAg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of Extreme Learning Machines and Echo State Networks to Seismic Multiple Removal</title><source>IEEE Xplore All Conference Series</source><creator>Carvalho, Heitor S. ; Shams, Farzin ; Ferrari, Rafael ; Boccato, Levy</creator><creatorcontrib>Carvalho, Heitor S. ; Shams, Farzin ; Ferrari, Rafael ; Boccato, Levy</creatorcontrib><description>In seismic exploration, the collected signals not only contain the primary reflections of the subsurface structures, but also multiple reflections, which may hamper a proper and reliable analysis of the seismic image. In order to attenuate the effect of the multiple events, a predictive deconvolution approach can be used, which is particularly adequate for shallow water, and involves the design of a filter to predict the multiple events. In this work, we investigate the possibility of employing nonlinear structures in lieu of the usual linear filter. The chosen structures in this study refer to extreme learning machines and echo state networks, which offer an interesting trade-off between compu- tational cost and processing capability. The obtained results in the context of synthetic data clearly reveal the potential of this approach and motivate the continuity of this investigation.</description><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9781509060146</identifier><identifier>EISBN: 1509060146</identifier><identifier>DOI: 10.1109/IJCNN.2018.8489620</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deconvolution ; Distortion ; echo state networks ; extreme learning machines ; Multiple removal ; predictive deconvolution ; Sea surface ; Sensors ; Surface impedance ; Task analysis ; Transforms</subject><ispartof>2018 International Joint Conference on Neural Networks (IJCNN), 2018, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8489620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8489620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Carvalho, Heitor S.</creatorcontrib><creatorcontrib>Shams, Farzin</creatorcontrib><creatorcontrib>Ferrari, Rafael</creatorcontrib><creatorcontrib>Boccato, Levy</creatorcontrib><title>Application of Extreme Learning Machines and Echo State Networks to Seismic Multiple Removal</title><title>2018 International Joint Conference on Neural Networks (IJCNN)</title><addtitle>IJCNN</addtitle><description>In seismic exploration, the collected signals not only contain the primary reflections of the subsurface structures, but also multiple reflections, which may hamper a proper and reliable analysis of the seismic image. In order to attenuate the effect of the multiple events, a predictive deconvolution approach can be used, which is particularly adequate for shallow water, and involves the design of a filter to predict the multiple events. In this work, we investigate the possibility of employing nonlinear structures in lieu of the usual linear filter. The chosen structures in this study refer to extreme learning machines and echo state networks, which offer an interesting trade-off between compu- tational cost and processing capability. The obtained results in the context of synthetic data clearly reveal the potential of this approach and motivate the continuity of this investigation.</description><subject>Deconvolution</subject><subject>Distortion</subject><subject>echo state networks</subject><subject>extreme learning machines</subject><subject>Multiple removal</subject><subject>predictive deconvolution</subject><subject>Sea surface</subject><subject>Sensors</subject><subject>Surface impedance</subject><subject>Task analysis</subject><subject>Transforms</subject><issn>2161-4407</issn><isbn>9781509060146</isbn><isbn>1509060146</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKAzEUQKMgWGt_QDf5gam5mUwmWZZStdJW8LETym1yY6PzYia-_l7Brg6cxVkcxi5ATAGEvVrezTebqRRgpkYZq6U4YhNbGiiEFVqA0sdsJEFDppQoT9nZMLwJIXNr8xF7mXVdFR2m2Da8DXzxnXqqia8I-yY2r3yNbh8bGjg2ni_cvuWPCRPxDaWvtn8fePozFIc6Or7-qFLsKuIPVLefWJ2zk4DVQJMDx-z5evE0v81W9zfL-WyVRSiLlAXpSixMoXfOBZkHB6S9QGmlV84oKHcWlUfUGlEFrY23GAIUTvgduNznY3b5341EtO36WGP_sz3MyH8BQc1VAg</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Carvalho, Heitor S.</creator><creator>Shams, Farzin</creator><creator>Ferrari, Rafael</creator><creator>Boccato, Levy</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201807</creationdate><title>Application of Extreme Learning Machines and Echo State Networks to Seismic Multiple Removal</title><author>Carvalho, Heitor S. ; Shams, Farzin ; Ferrari, Rafael ; Boccato, Levy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f2c7a5856bccf23fc1e6d0a292d4c8417b9a4daa66aa4f668d9aff15c0db1c3d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Deconvolution</topic><topic>Distortion</topic><topic>echo state networks</topic><topic>extreme learning machines</topic><topic>Multiple removal</topic><topic>predictive deconvolution</topic><topic>Sea surface</topic><topic>Sensors</topic><topic>Surface impedance</topic><topic>Task analysis</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Heitor S.</creatorcontrib><creatorcontrib>Shams, Farzin</creatorcontrib><creatorcontrib>Ferrari, Rafael</creatorcontrib><creatorcontrib>Boccato, Levy</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carvalho, Heitor S.</au><au>Shams, Farzin</au><au>Ferrari, Rafael</au><au>Boccato, Levy</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of Extreme Learning Machines and Echo State Networks to Seismic Multiple Removal</atitle><btitle>2018 International Joint Conference on Neural Networks (IJCNN)</btitle><stitle>IJCNN</stitle><date>2018-07</date><risdate>2018</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eissn>2161-4407</eissn><eisbn>9781509060146</eisbn><eisbn>1509060146</eisbn><abstract>In seismic exploration, the collected signals not only contain the primary reflections of the subsurface structures, but also multiple reflections, which may hamper a proper and reliable analysis of the seismic image. In order to attenuate the effect of the multiple events, a predictive deconvolution approach can be used, which is particularly adequate for shallow water, and involves the design of a filter to predict the multiple events. In this work, we investigate the possibility of employing nonlinear structures in lieu of the usual linear filter. The chosen structures in this study refer to extreme learning machines and echo state networks, which offer an interesting trade-off between compu- tational cost and processing capability. The obtained results in the context of synthetic data clearly reveal the potential of this approach and motivate the continuity of this investigation.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2018.8489620</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-4407 |
ispartof | 2018 International Joint Conference on Neural Networks (IJCNN), 2018, p.1-8 |
issn | 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_8489620 |
source | IEEE Xplore All Conference Series |
subjects | Deconvolution Distortion echo state networks extreme learning machines Multiple removal predictive deconvolution Sea surface Sensors Surface impedance Task analysis Transforms |
title | Application of Extreme Learning Machines and Echo State Networks to Seismic Multiple Removal |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20Extreme%20Learning%20Machines%20and%20Echo%20State%20Networks%20to%20Seismic%20Multiple%20Removal&rft.btitle=2018%20International%20Joint%20Conference%20on%20Neural%20Networks%20(IJCNN)&rft.au=Carvalho,%20Heitor%20S.&rft.date=2018-07&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.eissn=2161-4407&rft_id=info:doi/10.1109/IJCNN.2018.8489620&rft.eisbn=9781509060146&rft.eisbn_list=1509060146&rft_dat=%3Cieee_CHZPO%3E8489620%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f2c7a5856bccf23fc1e6d0a292d4c8417b9a4daa66aa4f668d9aff15c0db1c3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8489620&rfr_iscdi=true |