Loading…
Discovering Influence Hierarchy Based on Frequent Social Interactions
In this paper, we introduce a novel problem of discovering influence hierarchy to organize influential users in a social network into different levels according to their potential of spreading influence. We present a novel approach of discovering influence hierarchy utilizing the temporal aspect and...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 576 |
container_issue | |
container_start_page | 575 |
container_title | |
container_volume | |
creator | Tennakoon, T. M. G. Nayak, Richi |
description | In this paper, we introduce a novel problem of discovering influence hierarchy to organize influential users in a social network into different levels according to their potential of spreading influence. We present a novel approach of discovering influence hierarchy utilizing the temporal aspect and flow direction of interactions among users. The influence hierarchy has the potential to visualize the information flow of the network and identify different roles such as creators, information disseminators, emerging leaders and active followers. It is highly applicable in several domains such as sociology, marketing, political science and disaster management. |
doi_str_mv | 10.1109/ASONAM.2018.8508260 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8508260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8508260</ieee_id><sourcerecordid>8508260</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1350-6dc93972f03a3cfaee166536f4f8724bf89a80a18bf7b16d96cf384dc41831103</originalsourceid><addsrcrecordid>eNotj8tOwzAUBQ0SEqX0C7rxDyT42rFjL0PpSyp0UZDYVY5zDUYhATsg9e-JRFdncUYjDSFzYDkAM3fVYf9UPeacgc61ZJordkFuQAqtFJPAL8mEF6XIjIHXazJL6YMxBgqk4XpClg8huf4XY-je6Lbz7Q92DukmYLTRvZ_ovU3Y0L6jq4jf4znQQ--CbUd4GBk3hL5Lt-TK2zbh7LxT8rJaPi822W6_3i6qXRZASJapxhlhSu6ZsMJ5iwhKSaF84XXJi9prYzWzoGtf1qAao5wXumhcAVqMsWJK5v_egIjHrxg-bTwdz9XiDzzIS6w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Discovering Influence Hierarchy Based on Frequent Social Interactions</title><source>IEEE Xplore All Conference Series</source><creator>Tennakoon, T. M. G. ; Nayak, Richi</creator><creatorcontrib>Tennakoon, T. M. G. ; Nayak, Richi</creatorcontrib><description>In this paper, we introduce a novel problem of discovering influence hierarchy to organize influential users in a social network into different levels according to their potential of spreading influence. We present a novel approach of discovering influence hierarchy utilizing the temporal aspect and flow direction of interactions among users. The influence hierarchy has the potential to visualize the information flow of the network and identify different roles such as creators, information disseminators, emerging leaders and active followers. It is highly applicable in several domains such as sociology, marketing, political science and disaster management.</description><identifier>EISSN: 2473-991X</identifier><identifier>EISBN: 1538660512</identifier><identifier>EISBN: 9781538660515</identifier><identifier>DOI: 10.1109/ASONAM.2018.8508260</identifier><language>eng</language><publisher>IEEE</publisher><subject>Australia ; Correlation ; Frequent interaction ; Hierarchy ; Influence roles ; Minimization ; Social network ; Social network services ; Sorting ; Time-frequency analysis ; Visualization</subject><ispartof>2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2018, p.575-576</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8508260$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8508260$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tennakoon, T. M. G.</creatorcontrib><creatorcontrib>Nayak, Richi</creatorcontrib><title>Discovering Influence Hierarchy Based on Frequent Social Interactions</title><title>2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)</title><addtitle>ASONAM</addtitle><description>In this paper, we introduce a novel problem of discovering influence hierarchy to organize influential users in a social network into different levels according to their potential of spreading influence. We present a novel approach of discovering influence hierarchy utilizing the temporal aspect and flow direction of interactions among users. The influence hierarchy has the potential to visualize the information flow of the network and identify different roles such as creators, information disseminators, emerging leaders and active followers. It is highly applicable in several domains such as sociology, marketing, political science and disaster management.</description><subject>Australia</subject><subject>Correlation</subject><subject>Frequent interaction</subject><subject>Hierarchy</subject><subject>Influence roles</subject><subject>Minimization</subject><subject>Social network</subject><subject>Social network services</subject><subject>Sorting</subject><subject>Time-frequency analysis</subject><subject>Visualization</subject><issn>2473-991X</issn><isbn>1538660512</isbn><isbn>9781538660515</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tOwzAUBQ0SEqX0C7rxDyT42rFjL0PpSyp0UZDYVY5zDUYhATsg9e-JRFdncUYjDSFzYDkAM3fVYf9UPeacgc61ZJordkFuQAqtFJPAL8mEF6XIjIHXazJL6YMxBgqk4XpClg8huf4XY-je6Lbz7Q92DukmYLTRvZ_ovU3Y0L6jq4jf4znQQ--CbUd4GBk3hL5Lt-TK2zbh7LxT8rJaPi822W6_3i6qXRZASJapxhlhSu6ZsMJ5iwhKSaF84XXJi9prYzWzoGtf1qAao5wXumhcAVqMsWJK5v_egIjHrxg-bTwdz9XiDzzIS6w</recordid><startdate>20181024</startdate><enddate>20181024</enddate><creator>Tennakoon, T. M. G.</creator><creator>Nayak, Richi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20181024</creationdate><title>Discovering Influence Hierarchy Based on Frequent Social Interactions</title><author>Tennakoon, T. M. G. ; Nayak, Richi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1350-6dc93972f03a3cfaee166536f4f8724bf89a80a18bf7b16d96cf384dc41831103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Australia</topic><topic>Correlation</topic><topic>Frequent interaction</topic><topic>Hierarchy</topic><topic>Influence roles</topic><topic>Minimization</topic><topic>Social network</topic><topic>Social network services</topic><topic>Sorting</topic><topic>Time-frequency analysis</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Tennakoon, T. M. G.</creatorcontrib><creatorcontrib>Nayak, Richi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tennakoon, T. M. G.</au><au>Nayak, Richi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Discovering Influence Hierarchy Based on Frequent Social Interactions</atitle><btitle>2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)</btitle><stitle>ASONAM</stitle><date>2018-10-24</date><risdate>2018</risdate><spage>575</spage><epage>576</epage><pages>575-576</pages><eissn>2473-991X</eissn><eisbn>1538660512</eisbn><eisbn>9781538660515</eisbn><abstract>In this paper, we introduce a novel problem of discovering influence hierarchy to organize influential users in a social network into different levels according to their potential of spreading influence. We present a novel approach of discovering influence hierarchy utilizing the temporal aspect and flow direction of interactions among users. The influence hierarchy has the potential to visualize the information flow of the network and identify different roles such as creators, information disseminators, emerging leaders and active followers. It is highly applicable in several domains such as sociology, marketing, political science and disaster management.</abstract><pub>IEEE</pub><doi>10.1109/ASONAM.2018.8508260</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2473-991X |
ispartof | 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2018, p.575-576 |
issn | 2473-991X |
language | eng |
recordid | cdi_ieee_primary_8508260 |
source | IEEE Xplore All Conference Series |
subjects | Australia Correlation Frequent interaction Hierarchy Influence roles Minimization Social network Social network services Sorting Time-frequency analysis Visualization |
title | Discovering Influence Hierarchy Based on Frequent Social Interactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Discovering%20Influence%20Hierarchy%20Based%20on%20Frequent%20Social%20Interactions&rft.btitle=2018%20IEEE/ACM%20International%20Conference%20on%20Advances%20in%20Social%20Networks%20Analysis%20and%20Mining%20(ASONAM)&rft.au=Tennakoon,%20T.%20M.%20G.&rft.date=2018-10-24&rft.spage=575&rft.epage=576&rft.pages=575-576&rft.eissn=2473-991X&rft_id=info:doi/10.1109/ASONAM.2018.8508260&rft.eisbn=1538660512&rft.eisbn_list=9781538660515&rft_dat=%3Cieee_CHZPO%3E8508260%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1350-6dc93972f03a3cfaee166536f4f8724bf89a80a18bf7b16d96cf384dc41831103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8508260&rfr_iscdi=true |