Loading…

Discovering Influence Hierarchy Based on Frequent Social Interactions

In this paper, we introduce a novel problem of discovering influence hierarchy to organize influential users in a social network into different levels according to their potential of spreading influence. We present a novel approach of discovering influence hierarchy utilizing the temporal aspect and...

Full description

Saved in:
Bibliographic Details
Main Authors: Tennakoon, T. M. G., Nayak, Richi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 576
container_issue
container_start_page 575
container_title
container_volume
creator Tennakoon, T. M. G.
Nayak, Richi
description In this paper, we introduce a novel problem of discovering influence hierarchy to organize influential users in a social network into different levels according to their potential of spreading influence. We present a novel approach of discovering influence hierarchy utilizing the temporal aspect and flow direction of interactions among users. The influence hierarchy has the potential to visualize the information flow of the network and identify different roles such as creators, information disseminators, emerging leaders and active followers. It is highly applicable in several domains such as sociology, marketing, political science and disaster management.
doi_str_mv 10.1109/ASONAM.2018.8508260
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8508260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8508260</ieee_id><sourcerecordid>8508260</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1350-6dc93972f03a3cfaee166536f4f8724bf89a80a18bf7b16d96cf384dc41831103</originalsourceid><addsrcrecordid>eNotj8tOwzAUBQ0SEqX0C7rxDyT42rFjL0PpSyp0UZDYVY5zDUYhATsg9e-JRFdncUYjDSFzYDkAM3fVYf9UPeacgc61ZJordkFuQAqtFJPAL8mEF6XIjIHXazJL6YMxBgqk4XpClg8huf4XY-je6Lbz7Q92DukmYLTRvZ_ovU3Y0L6jq4jf4znQQ--CbUd4GBk3hL5Lt-TK2zbh7LxT8rJaPi822W6_3i6qXRZASJapxhlhSu6ZsMJ5iwhKSaF84XXJi9prYzWzoGtf1qAao5wXumhcAVqMsWJK5v_egIjHrxg-bTwdz9XiDzzIS6w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Discovering Influence Hierarchy Based on Frequent Social Interactions</title><source>IEEE Xplore All Conference Series</source><creator>Tennakoon, T. M. G. ; Nayak, Richi</creator><creatorcontrib>Tennakoon, T. M. G. ; Nayak, Richi</creatorcontrib><description>In this paper, we introduce a novel problem of discovering influence hierarchy to organize influential users in a social network into different levels according to their potential of spreading influence. We present a novel approach of discovering influence hierarchy utilizing the temporal aspect and flow direction of interactions among users. The influence hierarchy has the potential to visualize the information flow of the network and identify different roles such as creators, information disseminators, emerging leaders and active followers. It is highly applicable in several domains such as sociology, marketing, political science and disaster management.</description><identifier>EISSN: 2473-991X</identifier><identifier>EISBN: 1538660512</identifier><identifier>EISBN: 9781538660515</identifier><identifier>DOI: 10.1109/ASONAM.2018.8508260</identifier><language>eng</language><publisher>IEEE</publisher><subject>Australia ; Correlation ; Frequent interaction ; Hierarchy ; Influence roles ; Minimization ; Social network ; Social network services ; Sorting ; Time-frequency analysis ; Visualization</subject><ispartof>2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2018, p.575-576</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8508260$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8508260$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tennakoon, T. M. G.</creatorcontrib><creatorcontrib>Nayak, Richi</creatorcontrib><title>Discovering Influence Hierarchy Based on Frequent Social Interactions</title><title>2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)</title><addtitle>ASONAM</addtitle><description>In this paper, we introduce a novel problem of discovering influence hierarchy to organize influential users in a social network into different levels according to their potential of spreading influence. We present a novel approach of discovering influence hierarchy utilizing the temporal aspect and flow direction of interactions among users. The influence hierarchy has the potential to visualize the information flow of the network and identify different roles such as creators, information disseminators, emerging leaders and active followers. It is highly applicable in several domains such as sociology, marketing, political science and disaster management.</description><subject>Australia</subject><subject>Correlation</subject><subject>Frequent interaction</subject><subject>Hierarchy</subject><subject>Influence roles</subject><subject>Minimization</subject><subject>Social network</subject><subject>Social network services</subject><subject>Sorting</subject><subject>Time-frequency analysis</subject><subject>Visualization</subject><issn>2473-991X</issn><isbn>1538660512</isbn><isbn>9781538660515</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tOwzAUBQ0SEqX0C7rxDyT42rFjL0PpSyp0UZDYVY5zDUYhATsg9e-JRFdncUYjDSFzYDkAM3fVYf9UPeacgc61ZJordkFuQAqtFJPAL8mEF6XIjIHXazJL6YMxBgqk4XpClg8huf4XY-je6Lbz7Q92DukmYLTRvZ_ovU3Y0L6jq4jf4znQQ--CbUd4GBk3hL5Lt-TK2zbh7LxT8rJaPi822W6_3i6qXRZASJapxhlhSu6ZsMJ5iwhKSaF84XXJi9prYzWzoGtf1qAao5wXumhcAVqMsWJK5v_egIjHrxg-bTwdz9XiDzzIS6w</recordid><startdate>20181024</startdate><enddate>20181024</enddate><creator>Tennakoon, T. M. G.</creator><creator>Nayak, Richi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20181024</creationdate><title>Discovering Influence Hierarchy Based on Frequent Social Interactions</title><author>Tennakoon, T. M. G. ; Nayak, Richi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1350-6dc93972f03a3cfaee166536f4f8724bf89a80a18bf7b16d96cf384dc41831103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Australia</topic><topic>Correlation</topic><topic>Frequent interaction</topic><topic>Hierarchy</topic><topic>Influence roles</topic><topic>Minimization</topic><topic>Social network</topic><topic>Social network services</topic><topic>Sorting</topic><topic>Time-frequency analysis</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Tennakoon, T. M. G.</creatorcontrib><creatorcontrib>Nayak, Richi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tennakoon, T. M. G.</au><au>Nayak, Richi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Discovering Influence Hierarchy Based on Frequent Social Interactions</atitle><btitle>2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)</btitle><stitle>ASONAM</stitle><date>2018-10-24</date><risdate>2018</risdate><spage>575</spage><epage>576</epage><pages>575-576</pages><eissn>2473-991X</eissn><eisbn>1538660512</eisbn><eisbn>9781538660515</eisbn><abstract>In this paper, we introduce a novel problem of discovering influence hierarchy to organize influential users in a social network into different levels according to their potential of spreading influence. We present a novel approach of discovering influence hierarchy utilizing the temporal aspect and flow direction of interactions among users. The influence hierarchy has the potential to visualize the information flow of the network and identify different roles such as creators, information disseminators, emerging leaders and active followers. It is highly applicable in several domains such as sociology, marketing, political science and disaster management.</abstract><pub>IEEE</pub><doi>10.1109/ASONAM.2018.8508260</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2473-991X
ispartof 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2018, p.575-576
issn 2473-991X
language eng
recordid cdi_ieee_primary_8508260
source IEEE Xplore All Conference Series
subjects Australia
Correlation
Frequent interaction
Hierarchy
Influence roles
Minimization
Social network
Social network services
Sorting
Time-frequency analysis
Visualization
title Discovering Influence Hierarchy Based on Frequent Social Interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Discovering%20Influence%20Hierarchy%20Based%20on%20Frequent%20Social%20Interactions&rft.btitle=2018%20IEEE/ACM%20International%20Conference%20on%20Advances%20in%20Social%20Networks%20Analysis%20and%20Mining%20(ASONAM)&rft.au=Tennakoon,%20T.%20M.%20G.&rft.date=2018-10-24&rft.spage=575&rft.epage=576&rft.pages=575-576&rft.eissn=2473-991X&rft_id=info:doi/10.1109/ASONAM.2018.8508260&rft.eisbn=1538660512&rft.eisbn_list=9781538660515&rft_dat=%3Cieee_CHZPO%3E8508260%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1350-6dc93972f03a3cfaee166536f4f8724bf89a80a18bf7b16d96cf384dc41831103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8508260&rfr_iscdi=true