Loading…
A Multitier Stacked Ensemble Algorithm for Improving Classification Accuracy
For real-world problems, ensemble learning performs better than the individual classifiers. This is true for datasets that have many instances closer to the decision boundary. Using a meta-learner to learn from the predictions of the base classifiers generalizes better. Hence, stacked ensemble (SE)...
Saved in:
Published in: | Computing in science & engineering 2020-07, Vol.22 (4), p.74-85 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-b0f4ee735a1923fe6f4bdbc94ab956f3697019b531f44c189281b5790cbde6963 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-b0f4ee735a1923fe6f4bdbc94ab956f3697019b531f44c189281b5790cbde6963 |
container_end_page | 85 |
container_issue | 4 |
container_start_page | 74 |
container_title | Computing in science & engineering |
container_volume | 22 |
creator | Pari, Ramalingam Sandhya, Maheshwari Sankar, Sharmila |
description | For real-world problems, ensemble learning performs better than the individual classifiers. This is true for datasets that have many instances closer to the decision boundary. Using a meta-learner to learn from the predictions of the base classifiers generalizes better. Hence, stacked ensemble (SE) is preferred over other ensemble methods. We extend the SE and propose a multitier stacked ensemble (MTSE) algorithm with three tiers, namely, a base tier, an ensemble tier, and a generalization tier. The base tier uses the traditional classifiers to predict the labels. Tenfold cross-validation is used to validate the models in the base tiers. The cross-validated predictions are combined using combination schemes in the next tier. The predictions from the ensemble tier are generalized using meta-learning to give the final prediction. When tested with 36 datasets, the MTSE gives superior performance over the SE. It achieves high accuracy and does not suffer from over-fitting/under-fitting. |
doi_str_mv | 10.1109/MCSE.2018.2873940 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8509171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8509171</ieee_id><sourcerecordid>2415990035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b0f4ee735a1923fe6f4bdbc94ab956f3697019b531f44c189281b5790cbde6963</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRsFZ_gHgJeN6a2Xzs5rgsVQstHqrgLSRpUlP3oyZbof_eXVo8zRye953hSZJ7wDMALJ5W1Xo-yzAUs6zIiaD4IpkAY0VKOP-8HPcMUsGBXSc3Me4wxrQQbJIsS7Q61L3vvQ1o3SvzbTdo3kbb6Nqist52wfdfDXJdQItmH7pf325RVasYvfNG9b5rUWnMIShzvE2unKqjvTvPafLxPH-vXtPl28uiKpepyQTpU40dtTYnTIHIiLPcUb3RRlClBeOOcJFjEJoRcJQaKERWgGa5wEZvLBecTJPHU-_wz8_Bxl7uukNoh5Myo8CEwJiwgYITZUIXY7BO7oNvVDhKwHKUJkdpcpQmz9KGzMMp4621_3zBsIAcyB9ZMGgB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415990035</pqid></control><display><type>article</type><title>A Multitier Stacked Ensemble Algorithm for Improving Classification Accuracy</title><source>IEEE Xplore (Online service)</source><creator>Pari, Ramalingam ; Sandhya, Maheshwari ; Sankar, Sharmila</creator><creatorcontrib>Pari, Ramalingam ; Sandhya, Maheshwari ; Sankar, Sharmila</creatorcontrib><description>For real-world problems, ensemble learning performs better than the individual classifiers. This is true for datasets that have many instances closer to the decision boundary. Using a meta-learner to learn from the predictions of the base classifiers generalizes better. Hence, stacked ensemble (SE) is preferred over other ensemble methods. We extend the SE and propose a multitier stacked ensemble (MTSE) algorithm with three tiers, namely, a base tier, an ensemble tier, and a generalization tier. The base tier uses the traditional classifiers to predict the labels. Tenfold cross-validation is used to validate the models in the base tiers. The cross-validated predictions are combined using combination schemes in the next tier. The predictions from the ensemble tier are generalized using meta-learning to give the final prediction. When tested with 36 datasets, the MTSE gives superior performance over the SE. It achieves high accuracy and does not suffer from over-fitting/under-fitting.</description><identifier>ISSN: 1521-9615</identifier><identifier>EISSN: 1558-366X</identifier><identifier>DOI: 10.1109/MCSE.2018.2873940</identifier><identifier>CODEN: CSENFA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Classification algorithms ; Classifiers ; Computational modeling ; Datasets ; Machine learning ; Prediction algorithms ; Predictive models ; Random variables ; Support vector machines ; Training data</subject><ispartof>Computing in science & engineering, 2020-07, Vol.22 (4), p.74-85</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b0f4ee735a1923fe6f4bdbc94ab956f3697019b531f44c189281b5790cbde6963</citedby><cites>FETCH-LOGICAL-c293t-b0f4ee735a1923fe6f4bdbc94ab956f3697019b531f44c189281b5790cbde6963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8509171$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Pari, Ramalingam</creatorcontrib><creatorcontrib>Sandhya, Maheshwari</creatorcontrib><creatorcontrib>Sankar, Sharmila</creatorcontrib><title>A Multitier Stacked Ensemble Algorithm for Improving Classification Accuracy</title><title>Computing in science & engineering</title><addtitle>CISE-M</addtitle><description>For real-world problems, ensemble learning performs better than the individual classifiers. This is true for datasets that have many instances closer to the decision boundary. Using a meta-learner to learn from the predictions of the base classifiers generalizes better. Hence, stacked ensemble (SE) is preferred over other ensemble methods. We extend the SE and propose a multitier stacked ensemble (MTSE) algorithm with three tiers, namely, a base tier, an ensemble tier, and a generalization tier. The base tier uses the traditional classifiers to predict the labels. Tenfold cross-validation is used to validate the models in the base tiers. The cross-validated predictions are combined using combination schemes in the next tier. The predictions from the ensemble tier are generalized using meta-learning to give the final prediction. When tested with 36 datasets, the MTSE gives superior performance over the SE. It achieves high accuracy and does not suffer from over-fitting/under-fitting.</description><subject>Algorithms</subject><subject>Classification algorithms</subject><subject>Classifiers</subject><subject>Computational modeling</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Random variables</subject><subject>Support vector machines</subject><subject>Training data</subject><issn>1521-9615</issn><issn>1558-366X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhhdRsFZ_gHgJeN6a2Xzs5rgsVQstHqrgLSRpUlP3oyZbof_eXVo8zRye953hSZJ7wDMALJ5W1Xo-yzAUs6zIiaD4IpkAY0VKOP-8HPcMUsGBXSc3Me4wxrQQbJIsS7Q61L3vvQ1o3SvzbTdo3kbb6Nqist52wfdfDXJdQItmH7pf325RVasYvfNG9b5rUWnMIShzvE2unKqjvTvPafLxPH-vXtPl28uiKpepyQTpU40dtTYnTIHIiLPcUb3RRlClBeOOcJFjEJoRcJQaKERWgGa5wEZvLBecTJPHU-_wz8_Bxl7uukNoh5Myo8CEwJiwgYITZUIXY7BO7oNvVDhKwHKUJkdpcpQmz9KGzMMp4621_3zBsIAcyB9ZMGgB</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Pari, Ramalingam</creator><creator>Sandhya, Maheshwari</creator><creator>Sankar, Sharmila</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202007</creationdate><title>A Multitier Stacked Ensemble Algorithm for Improving Classification Accuracy</title><author>Pari, Ramalingam ; Sandhya, Maheshwari ; Sankar, Sharmila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b0f4ee735a1923fe6f4bdbc94ab956f3697019b531f44c189281b5790cbde6963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classification algorithms</topic><topic>Classifiers</topic><topic>Computational modeling</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Random variables</topic><topic>Support vector machines</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pari, Ramalingam</creatorcontrib><creatorcontrib>Sandhya, Maheshwari</creatorcontrib><creatorcontrib>Sankar, Sharmila</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computing in science & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pari, Ramalingam</au><au>Sandhya, Maheshwari</au><au>Sankar, Sharmila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multitier Stacked Ensemble Algorithm for Improving Classification Accuracy</atitle><jtitle>Computing in science & engineering</jtitle><stitle>CISE-M</stitle><date>2020-07</date><risdate>2020</risdate><volume>22</volume><issue>4</issue><spage>74</spage><epage>85</epage><pages>74-85</pages><issn>1521-9615</issn><eissn>1558-366X</eissn><coden>CSENFA</coden><abstract>For real-world problems, ensemble learning performs better than the individual classifiers. This is true for datasets that have many instances closer to the decision boundary. Using a meta-learner to learn from the predictions of the base classifiers generalizes better. Hence, stacked ensemble (SE) is preferred over other ensemble methods. We extend the SE and propose a multitier stacked ensemble (MTSE) algorithm with three tiers, namely, a base tier, an ensemble tier, and a generalization tier. The base tier uses the traditional classifiers to predict the labels. Tenfold cross-validation is used to validate the models in the base tiers. The cross-validated predictions are combined using combination schemes in the next tier. The predictions from the ensemble tier are generalized using meta-learning to give the final prediction. When tested with 36 datasets, the MTSE gives superior performance over the SE. It achieves high accuracy and does not suffer from over-fitting/under-fitting.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MCSE.2018.2873940</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1521-9615 |
ispartof | Computing in science & engineering, 2020-07, Vol.22 (4), p.74-85 |
issn | 1521-9615 1558-366X |
language | eng |
recordid | cdi_ieee_primary_8509171 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Classification algorithms Classifiers Computational modeling Datasets Machine learning Prediction algorithms Predictive models Random variables Support vector machines Training data |
title | A Multitier Stacked Ensemble Algorithm for Improving Classification Accuracy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multitier%20Stacked%20Ensemble%20Algorithm%20for%20Improving%20Classification%20Accuracy&rft.jtitle=Computing%20in%20science%20&%20engineering&rft.au=Pari,%20Ramalingam&rft.date=2020-07&rft.volume=22&rft.issue=4&rft.spage=74&rft.epage=85&rft.pages=74-85&rft.issn=1521-9615&rft.eissn=1558-366X&rft.coden=CSENFA&rft_id=info:doi/10.1109/MCSE.2018.2873940&rft_dat=%3Cproquest_ieee_%3E2415990035%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-b0f4ee735a1923fe6f4bdbc94ab956f3697019b531f44c189281b5790cbde6963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2415990035&rft_id=info:pmid/&rft_ieee_id=8509171&rfr_iscdi=true |