Loading…
Adaptive Cooperation of Prefetching and Warp Scheduling on GPUs
This paper proposes a new architecture, called Adaptive PREfetching and Scheduling (APRES), which improves cache efficiency of GPUs. APRES relies on the observation that GPU loads tend to have either high locality or strided access patterns across warps. APRES schedules warps so that as many cache h...
Saved in:
Published in: | IEEE transactions on computers 2019-04, Vol.68 (4), p.609-616 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes a new architecture, called Adaptive PREfetching and Scheduling (APRES), which improves cache efficiency of GPUs. APRES relies on the observation that GPU loads tend to have either high locality or strided access patterns across warps. APRES schedules warps so that as many cache hits are generated as possible before the generation of any cache miss. Without directly predicting future cache hits/misses for each warp, APRES creates a warp group that will execute the same static load shortly and prioritizes the grouped warps. If the first executed warp in the group hits the cache, grouped warps are likely to access the same cache lines. Unless, APRES considers the load as a strided type and generates prefetch requests for the grouped warps. In addition, APRES includes a new dynamic L1 prefetch and data cache partitioning to reduce contentions between demand-fetched and prefetched lines. In our evaluation, APRES achieves 27.8 percent performance improvement. |
---|---|
ISSN: | 0018-9340 1557-9956 |
DOI: | 10.1109/TC.2018.2878671 |