Loading…

Spatio-Temporal Variability of Phytoplankton Functional Types in Alboran Sea from Remote Sensing Images

During the last two decades, several satellite algorithms have been proposed to retrieve information about phytoplankton groups using ocean color data. One of these algorithms, the so-called PHYSAT -Med, has been developed specifically for the Mediterranean Sea due to the optical peculiarities of th...

Full description

Saved in:
Bibliographic Details
Main Authors: Navarro, Gabriel, Almaraz, Pablo, Caballero, Isabel, Vazquez, Agueda, Huertas, y I. Emma
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 966
container_issue
container_start_page 963
container_title
container_volume
creator Navarro, Gabriel
Almaraz, Pablo
Caballero, Isabel
Vazquez, Agueda
Huertas, y I. Emma
description During the last two decades, several satellite algorithms have been proposed to retrieve information about phytoplankton groups using ocean color data. One of these algorithms, the so-called PHYSAT -Med, has been developed specifically for the Mediterranean Sea due to the optical peculiarities of this basin. The method allows detection from ocean color images of phytoplankton groups, such as nanoeukaryotes, Prochlorococcus, Synechococcus and diatoms. In this work, the PHYSAT-Med updated version has been used to analyze the annual cycles of major phytoplankton groups in the Alboran Sea and extract periodic components of variability using wavelet analysis. According to the PHYSAT - Med OC-CCI outputs, the algorithm represents a useful tool for the spatio-temporal monitoring of dominant phytoplankton groups in Alboran Sea.
doi_str_mv 10.1109/IGARSS.2018.8517869
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8517869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8517869</ieee_id><sourcerecordid>8517869</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5f173deb997cf033cdb8e87ee515697f2586e778af34a15c9bdb714f5f74bec13</originalsourceid><addsrcrecordid>eNotkEFOwzAURA0SEqX0BN34Ain-cRzby6qiJVIlUFPYVnb6XQyJHSVhkdsTqV3NjPRmFkPIEtgKgOmXYrc-lOUqZaBWSoBUub4jCy0VCK5yCYJl92SWTimRjPFH8tT3P5NRKWMzcilbM_iYHLFpY2dq-mU6b6yv_TDS6OjH9zjEtjbhd4iBbv9CNdFh4o5jiz31ga5rOxUDLdFQ18WGHrCJA0459D5caNGYC_bP5MGZusfFTefkc_t63Lwl-_ddsVnvEw9SDIlwIPkZrdaycozz6mwVKokoQORaulSoHKVUxvHMgKi0PVsJmRNOZhYr4HOyvO56RDy1nW9MN55uv_B_MpRZIw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spatio-Temporal Variability of Phytoplankton Functional Types in Alboran Sea from Remote Sensing Images</title><source>IEEE Xplore All Conference Series</source><creator>Navarro, Gabriel ; Almaraz, Pablo ; Caballero, Isabel ; Vazquez, Agueda ; Huertas, y I. Emma</creator><creatorcontrib>Navarro, Gabriel ; Almaraz, Pablo ; Caballero, Isabel ; Vazquez, Agueda ; Huertas, y I. Emma</creatorcontrib><description>During the last two decades, several satellite algorithms have been proposed to retrieve information about phytoplankton groups using ocean color data. One of these algorithms, the so-called PHYSAT -Med, has been developed specifically for the Mediterranean Sea due to the optical peculiarities of this basin. The method allows detection from ocean color images of phytoplankton groups, such as nanoeukaryotes, Prochlorococcus, Synechococcus and diatoms. In this work, the PHYSAT-Med updated version has been used to analyze the annual cycles of major phytoplankton groups in the Alboran Sea and extract periodic components of variability using wavelet analysis. According to the PHYSAT - Med OC-CCI outputs, the algorithm represents a useful tool for the spatio-temporal monitoring of dominant phytoplankton groups in Alboran Sea.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781538671504</identifier><identifier>EISBN: 1538671506</identifier><identifier>DOI: 10.1109/IGARSS.2018.8517869</identifier><language>eng</language><publisher>IEEE</publisher><subject>Alboran Sea ; Image color analysis ; OC-CCI database ; Oceans ; PHYSAT-Med algorithm ; Phytoplankton functional types ; Remote sensing ; Satellites ; Sensors ; Time series analysis ; Wavelet analysis</subject><ispartof>IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, p.963-966</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8517869$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8517869$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Navarro, Gabriel</creatorcontrib><creatorcontrib>Almaraz, Pablo</creatorcontrib><creatorcontrib>Caballero, Isabel</creatorcontrib><creatorcontrib>Vazquez, Agueda</creatorcontrib><creatorcontrib>Huertas, y I. Emma</creatorcontrib><title>Spatio-Temporal Variability of Phytoplankton Functional Types in Alboran Sea from Remote Sensing Images</title><title>IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>During the last two decades, several satellite algorithms have been proposed to retrieve information about phytoplankton groups using ocean color data. One of these algorithms, the so-called PHYSAT -Med, has been developed specifically for the Mediterranean Sea due to the optical peculiarities of this basin. The method allows detection from ocean color images of phytoplankton groups, such as nanoeukaryotes, Prochlorococcus, Synechococcus and diatoms. In this work, the PHYSAT-Med updated version has been used to analyze the annual cycles of major phytoplankton groups in the Alboran Sea and extract periodic components of variability using wavelet analysis. According to the PHYSAT - Med OC-CCI outputs, the algorithm represents a useful tool for the spatio-temporal monitoring of dominant phytoplankton groups in Alboran Sea.</description><subject>Alboran Sea</subject><subject>Image color analysis</subject><subject>OC-CCI database</subject><subject>Oceans</subject><subject>PHYSAT-Med algorithm</subject><subject>Phytoplankton functional types</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Time series analysis</subject><subject>Wavelet analysis</subject><issn>2153-7003</issn><isbn>9781538671504</isbn><isbn>1538671506</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkEFOwzAURA0SEqX0BN34Ain-cRzby6qiJVIlUFPYVnb6XQyJHSVhkdsTqV3NjPRmFkPIEtgKgOmXYrc-lOUqZaBWSoBUub4jCy0VCK5yCYJl92SWTimRjPFH8tT3P5NRKWMzcilbM_iYHLFpY2dq-mU6b6yv_TDS6OjH9zjEtjbhd4iBbv9CNdFh4o5jiz31ga5rOxUDLdFQ18WGHrCJA0459D5caNGYC_bP5MGZusfFTefkc_t63Lwl-_ddsVnvEw9SDIlwIPkZrdaycozz6mwVKokoQORaulSoHKVUxvHMgKi0PVsJmRNOZhYr4HOyvO56RDy1nW9MN55uv_B_MpRZIw</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Navarro, Gabriel</creator><creator>Almaraz, Pablo</creator><creator>Caballero, Isabel</creator><creator>Vazquez, Agueda</creator><creator>Huertas, y I. Emma</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201807</creationdate><title>Spatio-Temporal Variability of Phytoplankton Functional Types in Alboran Sea from Remote Sensing Images</title><author>Navarro, Gabriel ; Almaraz, Pablo ; Caballero, Isabel ; Vazquez, Agueda ; Huertas, y I. Emma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5f173deb997cf033cdb8e87ee515697f2586e778af34a15c9bdb714f5f74bec13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alboran Sea</topic><topic>Image color analysis</topic><topic>OC-CCI database</topic><topic>Oceans</topic><topic>PHYSAT-Med algorithm</topic><topic>Phytoplankton functional types</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Time series analysis</topic><topic>Wavelet analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Navarro, Gabriel</creatorcontrib><creatorcontrib>Almaraz, Pablo</creatorcontrib><creatorcontrib>Caballero, Isabel</creatorcontrib><creatorcontrib>Vazquez, Agueda</creatorcontrib><creatorcontrib>Huertas, y I. Emma</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Navarro, Gabriel</au><au>Almaraz, Pablo</au><au>Caballero, Isabel</au><au>Vazquez, Agueda</au><au>Huertas, y I. Emma</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spatio-Temporal Variability of Phytoplankton Functional Types in Alboran Sea from Remote Sensing Images</atitle><btitle>IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2018-07</date><risdate>2018</risdate><spage>963</spage><epage>966</epage><pages>963-966</pages><eissn>2153-7003</eissn><eisbn>9781538671504</eisbn><eisbn>1538671506</eisbn><abstract>During the last two decades, several satellite algorithms have been proposed to retrieve information about phytoplankton groups using ocean color data. One of these algorithms, the so-called PHYSAT -Med, has been developed specifically for the Mediterranean Sea due to the optical peculiarities of this basin. The method allows detection from ocean color images of phytoplankton groups, such as nanoeukaryotes, Prochlorococcus, Synechococcus and diatoms. In this work, the PHYSAT-Med updated version has been used to analyze the annual cycles of major phytoplankton groups in the Alboran Sea and extract periodic components of variability using wavelet analysis. According to the PHYSAT - Med OC-CCI outputs, the algorithm represents a useful tool for the spatio-temporal monitoring of dominant phytoplankton groups in Alboran Sea.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2018.8517869</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-7003
ispartof IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, p.963-966
issn 2153-7003
language eng
recordid cdi_ieee_primary_8517869
source IEEE Xplore All Conference Series
subjects Alboran Sea
Image color analysis
OC-CCI database
Oceans
PHYSAT-Med algorithm
Phytoplankton functional types
Remote sensing
Satellites
Sensors
Time series analysis
Wavelet analysis
title Spatio-Temporal Variability of Phytoplankton Functional Types in Alboran Sea from Remote Sensing Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spatio-Temporal%20Variability%20of%20Phytoplankton%20Functional%20Types%20in%20Alboran%20Sea%20from%20Remote%20Sensing%20Images&rft.btitle=IGARSS%202018%20-%202018%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Navarro,%20Gabriel&rft.date=2018-07&rft.spage=963&rft.epage=966&rft.pages=963-966&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS.2018.8517869&rft.eisbn=9781538671504&rft.eisbn_list=1538671506&rft_dat=%3Cieee_CHZPO%3E8517869%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5f173deb997cf033cdb8e87ee515697f2586e778af34a15c9bdb714f5f74bec13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8517869&rfr_iscdi=true