Loading…
Spatial Algal Bloom Characterization by Landsat 8-Oli and Field Data Analysis
Water pollution is an important problem around the world as it is closely related to human and environmental health. Field campaigns are expensive, time consuming and may provide little information. Remote sensing provides synoptic spatio-temporal views and can lead to a better understanding of lake...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 9295 |
container_issue | |
container_start_page | 929 |
container_title | |
container_volume | |
creator | Alarcon, Andrea Guachalla German, Alba Aleksinko, Alejandro Ferreyra, Maria Fernanda Garcia Scavuzzo, Carlos Marcelo Ferral, Anabella |
description | Water pollution is an important problem around the world as it is closely related to human and environmental health. Field campaigns are expensive, time consuming and may provide little information. Remote sensing provides synoptic spatio-temporal views and can lead to a better understanding of lake ecology. In this work an extreme algal bloom event which occurred in a reservoir is characterized by LANDSAT8-OLI sensor and in situ sampling. Chlorophyll-a concentration and algae abundance data are measured on samples collected simultaneously with satellite pass and used to build semiempirical models. Two linear functions to calculate chlorophyll-a from satellite data are presented and compared. A linear model from band 2 (blue) and band 5 (NIR) presents the best performance with a determination coefficient equal to 0,89. In situ and satellite chlorophyll-a lead comparable trophic class assessment, hypertrophic. Both Models fail to predict chlorophyll-a concentration near river intrusion (North), where low values of reflectance are recorded. |
doi_str_mv | 10.1109/IGARSS.2018.8518844 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8518844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8518844</ieee_id><sourcerecordid>8518844</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-865d4585562fa61942e103f1af695509888104cc013d46ea9246ec4488becba53</originalsourceid><addsrcrecordid>eNotj0FLw0AUhFdBsNb-gl72D6TuS3Y3b48x2lqIFIyey0uy0ZVtUrK5xF9voL3MzMfAwDC2BrEBEOZpv8s-ynITC8ANKkCU8oatTIqgEtQpKCFv2SKeKUqFSO7ZQwi_c8BYiAV7L880OvI889-zPvu-P_H8hwaqRzu4v7nsO15NvKCuCTRyjA7e8Rn41lnf8BcaiWcd-Sm48MjuWvLBrq6-ZF_b18_8LSoOu32eFZGDVI0RatVIhUrpuCUNRsYWRNICtdooJQwigpB1LSBppLZk4llrKRErW1ekkiVbX3adtfZ4HtyJhul4fZ_8A-PbTLI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spatial Algal Bloom Characterization by Landsat 8-Oli and Field Data Analysis</title><source>IEEE Xplore All Conference Series</source><creator>Alarcon, Andrea Guachalla ; German, Alba ; Aleksinko, Alejandro ; Ferreyra, Maria Fernanda Garcia ; Scavuzzo, Carlos Marcelo ; Ferral, Anabella</creator><creatorcontrib>Alarcon, Andrea Guachalla ; German, Alba ; Aleksinko, Alejandro ; Ferreyra, Maria Fernanda Garcia ; Scavuzzo, Carlos Marcelo ; Ferral, Anabella</creatorcontrib><description>Water pollution is an important problem around the world as it is closely related to human and environmental health. Field campaigns are expensive, time consuming and may provide little information. Remote sensing provides synoptic spatio-temporal views and can lead to a better understanding of lake ecology. In this work an extreme algal bloom event which occurred in a reservoir is characterized by LANDSAT8-OLI sensor and in situ sampling. Chlorophyll-a concentration and algae abundance data are measured on samples collected simultaneously with satellite pass and used to build semiempirical models. Two linear functions to calculate chlorophyll-a from satellite data are presented and compared. A linear model from band 2 (blue) and band 5 (NIR) presents the best performance with a determination coefficient equal to 0,89. In situ and satellite chlorophyll-a lead comparable trophic class assessment, hypertrophic. Both Models fail to predict chlorophyll-a concentration near river intrusion (North), where low values of reflectance are recorded.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781538671504</identifier><identifier>EISBN: 1538671506</identifier><identifier>DOI: 10.1109/IGARSS.2018.8518844</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial satellites ; chlorophyll-a ; Earth ; eutrophication ; Lakes ; LANDSAT8-OLI ; linear regression ; Mathematical model ; phytoplankton ; Remote sensing ; Reservoirs ; Satellites</subject><ispartof>IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, p.929-9295</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8518844$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8518844$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alarcon, Andrea Guachalla</creatorcontrib><creatorcontrib>German, Alba</creatorcontrib><creatorcontrib>Aleksinko, Alejandro</creatorcontrib><creatorcontrib>Ferreyra, Maria Fernanda Garcia</creatorcontrib><creatorcontrib>Scavuzzo, Carlos Marcelo</creatorcontrib><creatorcontrib>Ferral, Anabella</creatorcontrib><title>Spatial Algal Bloom Characterization by Landsat 8-Oli and Field Data Analysis</title><title>IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>Water pollution is an important problem around the world as it is closely related to human and environmental health. Field campaigns are expensive, time consuming and may provide little information. Remote sensing provides synoptic spatio-temporal views and can lead to a better understanding of lake ecology. In this work an extreme algal bloom event which occurred in a reservoir is characterized by LANDSAT8-OLI sensor and in situ sampling. Chlorophyll-a concentration and algae abundance data are measured on samples collected simultaneously with satellite pass and used to build semiempirical models. Two linear functions to calculate chlorophyll-a from satellite data are presented and compared. A linear model from band 2 (blue) and band 5 (NIR) presents the best performance with a determination coefficient equal to 0,89. In situ and satellite chlorophyll-a lead comparable trophic class assessment, hypertrophic. Both Models fail to predict chlorophyll-a concentration near river intrusion (North), where low values of reflectance are recorded.</description><subject>Artificial satellites</subject><subject>chlorophyll-a</subject><subject>Earth</subject><subject>eutrophication</subject><subject>Lakes</subject><subject>LANDSAT8-OLI</subject><subject>linear regression</subject><subject>Mathematical model</subject><subject>phytoplankton</subject><subject>Remote sensing</subject><subject>Reservoirs</subject><subject>Satellites</subject><issn>2153-7003</issn><isbn>9781538671504</isbn><isbn>1538671506</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0FLw0AUhFdBsNb-gl72D6TuS3Y3b48x2lqIFIyey0uy0ZVtUrK5xF9voL3MzMfAwDC2BrEBEOZpv8s-ynITC8ANKkCU8oatTIqgEtQpKCFv2SKeKUqFSO7ZQwi_c8BYiAV7L880OvI889-zPvu-P_H8hwaqRzu4v7nsO15NvKCuCTRyjA7e8Rn41lnf8BcaiWcd-Sm48MjuWvLBrq6-ZF_b18_8LSoOu32eFZGDVI0RatVIhUrpuCUNRsYWRNICtdooJQwigpB1LSBppLZk4llrKRErW1ekkiVbX3adtfZ4HtyJhul4fZ_8A-PbTLI</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Alarcon, Andrea Guachalla</creator><creator>German, Alba</creator><creator>Aleksinko, Alejandro</creator><creator>Ferreyra, Maria Fernanda Garcia</creator><creator>Scavuzzo, Carlos Marcelo</creator><creator>Ferral, Anabella</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201807</creationdate><title>Spatial Algal Bloom Characterization by Landsat 8-Oli and Field Data Analysis</title><author>Alarcon, Andrea Guachalla ; German, Alba ; Aleksinko, Alejandro ; Ferreyra, Maria Fernanda Garcia ; Scavuzzo, Carlos Marcelo ; Ferral, Anabella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-865d4585562fa61942e103f1af695509888104cc013d46ea9246ec4488becba53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial satellites</topic><topic>chlorophyll-a</topic><topic>Earth</topic><topic>eutrophication</topic><topic>Lakes</topic><topic>LANDSAT8-OLI</topic><topic>linear regression</topic><topic>Mathematical model</topic><topic>phytoplankton</topic><topic>Remote sensing</topic><topic>Reservoirs</topic><topic>Satellites</topic><toplevel>online_resources</toplevel><creatorcontrib>Alarcon, Andrea Guachalla</creatorcontrib><creatorcontrib>German, Alba</creatorcontrib><creatorcontrib>Aleksinko, Alejandro</creatorcontrib><creatorcontrib>Ferreyra, Maria Fernanda Garcia</creatorcontrib><creatorcontrib>Scavuzzo, Carlos Marcelo</creatorcontrib><creatorcontrib>Ferral, Anabella</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alarcon, Andrea Guachalla</au><au>German, Alba</au><au>Aleksinko, Alejandro</au><au>Ferreyra, Maria Fernanda Garcia</au><au>Scavuzzo, Carlos Marcelo</au><au>Ferral, Anabella</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spatial Algal Bloom Characterization by Landsat 8-Oli and Field Data Analysis</atitle><btitle>IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2018-07</date><risdate>2018</risdate><spage>929</spage><epage>9295</epage><pages>929-9295</pages><eissn>2153-7003</eissn><eisbn>9781538671504</eisbn><eisbn>1538671506</eisbn><abstract>Water pollution is an important problem around the world as it is closely related to human and environmental health. Field campaigns are expensive, time consuming and may provide little information. Remote sensing provides synoptic spatio-temporal views and can lead to a better understanding of lake ecology. In this work an extreme algal bloom event which occurred in a reservoir is characterized by LANDSAT8-OLI sensor and in situ sampling. Chlorophyll-a concentration and algae abundance data are measured on samples collected simultaneously with satellite pass and used to build semiempirical models. Two linear functions to calculate chlorophyll-a from satellite data are presented and compared. A linear model from band 2 (blue) and band 5 (NIR) presents the best performance with a determination coefficient equal to 0,89. In situ and satellite chlorophyll-a lead comparable trophic class assessment, hypertrophic. Both Models fail to predict chlorophyll-a concentration near river intrusion (North), where low values of reflectance are recorded.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2018.8518844</doi><tpages>8367</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-7003 |
ispartof | IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, p.929-9295 |
issn | 2153-7003 |
language | eng |
recordid | cdi_ieee_primary_8518844 |
source | IEEE Xplore All Conference Series |
subjects | Artificial satellites chlorophyll-a Earth eutrophication Lakes LANDSAT8-OLI linear regression Mathematical model phytoplankton Remote sensing Reservoirs Satellites |
title | Spatial Algal Bloom Characterization by Landsat 8-Oli and Field Data Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spatial%20Algal%20Bloom%20Characterization%20by%20Landsat%208-Oli%20and%20Field%20Data%20Analysis&rft.btitle=IGARSS%202018%20-%202018%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Alarcon,%20Andrea%20Guachalla&rft.date=2018-07&rft.spage=929&rft.epage=9295&rft.pages=929-9295&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS.2018.8518844&rft.eisbn=9781538671504&rft.eisbn_list=1538671506&rft_dat=%3Cieee_CHZPO%3E8518844%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-865d4585562fa61942e103f1af695509888104cc013d46ea9246ec4488becba53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8518844&rfr_iscdi=true |