Loading…

Spatial Algal Bloom Characterization by Landsat 8-Oli and Field Data Analysis

Water pollution is an important problem around the world as it is closely related to human and environmental health. Field campaigns are expensive, time consuming and may provide little information. Remote sensing provides synoptic spatio-temporal views and can lead to a better understanding of lake...

Full description

Saved in:
Bibliographic Details
Main Authors: Alarcon, Andrea Guachalla, German, Alba, Aleksinko, Alejandro, Ferreyra, Maria Fernanda Garcia, Scavuzzo, Carlos Marcelo, Ferral, Anabella
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 9295
container_issue
container_start_page 929
container_title
container_volume
creator Alarcon, Andrea Guachalla
German, Alba
Aleksinko, Alejandro
Ferreyra, Maria Fernanda Garcia
Scavuzzo, Carlos Marcelo
Ferral, Anabella
description Water pollution is an important problem around the world as it is closely related to human and environmental health. Field campaigns are expensive, time consuming and may provide little information. Remote sensing provides synoptic spatio-temporal views and can lead to a better understanding of lake ecology. In this work an extreme algal bloom event which occurred in a reservoir is characterized by LANDSAT8-OLI sensor and in situ sampling. Chlorophyll-a concentration and algae abundance data are measured on samples collected simultaneously with satellite pass and used to build semiempirical models. Two linear functions to calculate chlorophyll-a from satellite data are presented and compared. A linear model from band 2 (blue) and band 5 (NIR) presents the best performance with a determination coefficient equal to 0,89. In situ and satellite chlorophyll-a lead comparable trophic class assessment, hypertrophic. Both Models fail to predict chlorophyll-a concentration near river intrusion (North), where low values of reflectance are recorded.
doi_str_mv 10.1109/IGARSS.2018.8518844
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8518844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8518844</ieee_id><sourcerecordid>8518844</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-865d4585562fa61942e103f1af695509888104cc013d46ea9246ec4488becba53</originalsourceid><addsrcrecordid>eNotj0FLw0AUhFdBsNb-gl72D6TuS3Y3b48x2lqIFIyey0uy0ZVtUrK5xF9voL3MzMfAwDC2BrEBEOZpv8s-ynITC8ANKkCU8oatTIqgEtQpKCFv2SKeKUqFSO7ZQwi_c8BYiAV7L880OvI889-zPvu-P_H8hwaqRzu4v7nsO15NvKCuCTRyjA7e8Rn41lnf8BcaiWcd-Sm48MjuWvLBrq6-ZF_b18_8LSoOu32eFZGDVI0RatVIhUrpuCUNRsYWRNICtdooJQwigpB1LSBppLZk4llrKRErW1ekkiVbX3adtfZ4HtyJhul4fZ_8A-PbTLI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spatial Algal Bloom Characterization by Landsat 8-Oli and Field Data Analysis</title><source>IEEE Xplore All Conference Series</source><creator>Alarcon, Andrea Guachalla ; German, Alba ; Aleksinko, Alejandro ; Ferreyra, Maria Fernanda Garcia ; Scavuzzo, Carlos Marcelo ; Ferral, Anabella</creator><creatorcontrib>Alarcon, Andrea Guachalla ; German, Alba ; Aleksinko, Alejandro ; Ferreyra, Maria Fernanda Garcia ; Scavuzzo, Carlos Marcelo ; Ferral, Anabella</creatorcontrib><description>Water pollution is an important problem around the world as it is closely related to human and environmental health. Field campaigns are expensive, time consuming and may provide little information. Remote sensing provides synoptic spatio-temporal views and can lead to a better understanding of lake ecology. In this work an extreme algal bloom event which occurred in a reservoir is characterized by LANDSAT8-OLI sensor and in situ sampling. Chlorophyll-a concentration and algae abundance data are measured on samples collected simultaneously with satellite pass and used to build semiempirical models. Two linear functions to calculate chlorophyll-a from satellite data are presented and compared. A linear model from band 2 (blue) and band 5 (NIR) presents the best performance with a determination coefficient equal to 0,89. In situ and satellite chlorophyll-a lead comparable trophic class assessment, hypertrophic. Both Models fail to predict chlorophyll-a concentration near river intrusion (North), where low values of reflectance are recorded.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781538671504</identifier><identifier>EISBN: 1538671506</identifier><identifier>DOI: 10.1109/IGARSS.2018.8518844</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial satellites ; chlorophyll-a ; Earth ; eutrophication ; Lakes ; LANDSAT8-OLI ; linear regression ; Mathematical model ; phytoplankton ; Remote sensing ; Reservoirs ; Satellites</subject><ispartof>IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, p.929-9295</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8518844$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8518844$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alarcon, Andrea Guachalla</creatorcontrib><creatorcontrib>German, Alba</creatorcontrib><creatorcontrib>Aleksinko, Alejandro</creatorcontrib><creatorcontrib>Ferreyra, Maria Fernanda Garcia</creatorcontrib><creatorcontrib>Scavuzzo, Carlos Marcelo</creatorcontrib><creatorcontrib>Ferral, Anabella</creatorcontrib><title>Spatial Algal Bloom Characterization by Landsat 8-Oli and Field Data Analysis</title><title>IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>Water pollution is an important problem around the world as it is closely related to human and environmental health. Field campaigns are expensive, time consuming and may provide little information. Remote sensing provides synoptic spatio-temporal views and can lead to a better understanding of lake ecology. In this work an extreme algal bloom event which occurred in a reservoir is characterized by LANDSAT8-OLI sensor and in situ sampling. Chlorophyll-a concentration and algae abundance data are measured on samples collected simultaneously with satellite pass and used to build semiempirical models. Two linear functions to calculate chlorophyll-a from satellite data are presented and compared. A linear model from band 2 (blue) and band 5 (NIR) presents the best performance with a determination coefficient equal to 0,89. In situ and satellite chlorophyll-a lead comparable trophic class assessment, hypertrophic. Both Models fail to predict chlorophyll-a concentration near river intrusion (North), where low values of reflectance are recorded.</description><subject>Artificial satellites</subject><subject>chlorophyll-a</subject><subject>Earth</subject><subject>eutrophication</subject><subject>Lakes</subject><subject>LANDSAT8-OLI</subject><subject>linear regression</subject><subject>Mathematical model</subject><subject>phytoplankton</subject><subject>Remote sensing</subject><subject>Reservoirs</subject><subject>Satellites</subject><issn>2153-7003</issn><isbn>9781538671504</isbn><isbn>1538671506</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0FLw0AUhFdBsNb-gl72D6TuS3Y3b48x2lqIFIyey0uy0ZVtUrK5xF9voL3MzMfAwDC2BrEBEOZpv8s-ynITC8ANKkCU8oatTIqgEtQpKCFv2SKeKUqFSO7ZQwi_c8BYiAV7L880OvI889-zPvu-P_H8hwaqRzu4v7nsO15NvKCuCTRyjA7e8Rn41lnf8BcaiWcd-Sm48MjuWvLBrq6-ZF_b18_8LSoOu32eFZGDVI0RatVIhUrpuCUNRsYWRNICtdooJQwigpB1LSBppLZk4llrKRErW1ekkiVbX3adtfZ4HtyJhul4fZ_8A-PbTLI</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Alarcon, Andrea Guachalla</creator><creator>German, Alba</creator><creator>Aleksinko, Alejandro</creator><creator>Ferreyra, Maria Fernanda Garcia</creator><creator>Scavuzzo, Carlos Marcelo</creator><creator>Ferral, Anabella</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201807</creationdate><title>Spatial Algal Bloom Characterization by Landsat 8-Oli and Field Data Analysis</title><author>Alarcon, Andrea Guachalla ; German, Alba ; Aleksinko, Alejandro ; Ferreyra, Maria Fernanda Garcia ; Scavuzzo, Carlos Marcelo ; Ferral, Anabella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-865d4585562fa61942e103f1af695509888104cc013d46ea9246ec4488becba53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial satellites</topic><topic>chlorophyll-a</topic><topic>Earth</topic><topic>eutrophication</topic><topic>Lakes</topic><topic>LANDSAT8-OLI</topic><topic>linear regression</topic><topic>Mathematical model</topic><topic>phytoplankton</topic><topic>Remote sensing</topic><topic>Reservoirs</topic><topic>Satellites</topic><toplevel>online_resources</toplevel><creatorcontrib>Alarcon, Andrea Guachalla</creatorcontrib><creatorcontrib>German, Alba</creatorcontrib><creatorcontrib>Aleksinko, Alejandro</creatorcontrib><creatorcontrib>Ferreyra, Maria Fernanda Garcia</creatorcontrib><creatorcontrib>Scavuzzo, Carlos Marcelo</creatorcontrib><creatorcontrib>Ferral, Anabella</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alarcon, Andrea Guachalla</au><au>German, Alba</au><au>Aleksinko, Alejandro</au><au>Ferreyra, Maria Fernanda Garcia</au><au>Scavuzzo, Carlos Marcelo</au><au>Ferral, Anabella</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spatial Algal Bloom Characterization by Landsat 8-Oli and Field Data Analysis</atitle><btitle>IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2018-07</date><risdate>2018</risdate><spage>929</spage><epage>9295</epage><pages>929-9295</pages><eissn>2153-7003</eissn><eisbn>9781538671504</eisbn><eisbn>1538671506</eisbn><abstract>Water pollution is an important problem around the world as it is closely related to human and environmental health. Field campaigns are expensive, time consuming and may provide little information. Remote sensing provides synoptic spatio-temporal views and can lead to a better understanding of lake ecology. In this work an extreme algal bloom event which occurred in a reservoir is characterized by LANDSAT8-OLI sensor and in situ sampling. Chlorophyll-a concentration and algae abundance data are measured on samples collected simultaneously with satellite pass and used to build semiempirical models. Two linear functions to calculate chlorophyll-a from satellite data are presented and compared. A linear model from band 2 (blue) and band 5 (NIR) presents the best performance with a determination coefficient equal to 0,89. In situ and satellite chlorophyll-a lead comparable trophic class assessment, hypertrophic. Both Models fail to predict chlorophyll-a concentration near river intrusion (North), where low values of reflectance are recorded.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2018.8518844</doi><tpages>8367</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-7003
ispartof IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, p.929-9295
issn 2153-7003
language eng
recordid cdi_ieee_primary_8518844
source IEEE Xplore All Conference Series
subjects Artificial satellites
chlorophyll-a
Earth
eutrophication
Lakes
LANDSAT8-OLI
linear regression
Mathematical model
phytoplankton
Remote sensing
Reservoirs
Satellites
title Spatial Algal Bloom Characterization by Landsat 8-Oli and Field Data Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spatial%20Algal%20Bloom%20Characterization%20by%20Landsat%208-Oli%20and%20Field%20Data%20Analysis&rft.btitle=IGARSS%202018%20-%202018%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Alarcon,%20Andrea%20Guachalla&rft.date=2018-07&rft.spage=929&rft.epage=9295&rft.pages=929-9295&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS.2018.8518844&rft.eisbn=9781538671504&rft.eisbn_list=1538671506&rft_dat=%3Cieee_CHZPO%3E8518844%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-865d4585562fa61942e103f1af695509888104cc013d46ea9246ec4488becba53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8518844&rfr_iscdi=true