Loading…
Deep FisherNet for Image Classification
Despite the great success of convolutional neural networks (CNNs) for the image classification task on data sets such as Cifar and ImageNet, CNN's representation power is still somewhat limited in dealing with images that have a large variation in size and clutter, where Fisher vector (FV) has...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2019-07, Vol.30 (7), p.2244-2250 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-55417f3ef0d55db6cc333bf93051089ebc5aa65da12ec59ba675a35a449a3ff33 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-55417f3ef0d55db6cc333bf93051089ebc5aa65da12ec59ba675a35a449a3ff33 |
container_end_page | 2250 |
container_issue | 7 |
container_start_page | 2244 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 30 |
creator | Tang, Peng Wang, Xinggang Shi, Baoguang Bai, Xiang Liu, Wenyu Tu, Zhuowen |
description | Despite the great success of convolutional neural networks (CNNs) for the image classification task on data sets such as Cifar and ImageNet, CNN's representation power is still somewhat limited in dealing with images that have a large variation in size and clutter, where Fisher vector (FV) has shown to be an effective encoding strategy. FV encodes an image by aggregating local descriptors with a universal generative Gaussian mixture model (GMM). FV, however, has limited learning capability and its parameters are mostly fixed after constructing the codebook. To combine together the best of the two worlds, we propose in this brief a neural network structure with FV layer being part of an end-to-end trainable system that is differentiable; we name our network FisherNet that is learnable using back propagation. Our proposed FisherNet combines CNN training and FV encoding in a single end-to-end structure. We observe a clear advantage of FisherNet over plain CNN and standard FV in terms of both classification accuracy and computational efficiency on the challenging PASCAL visual object classes object classification and emotion image classification tasks. |
doi_str_mv | 10.1109/TNNLS.2018.2874657 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8522050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8522050</ieee_id><sourcerecordid>2131241834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-55417f3ef0d55db6cc333bf93051089ebc5aa65da12ec59ba675a35a449a3ff33</originalsourceid><addsrcrecordid>eNpdkMFKw0AQhhdRrNS-gIIEPOgldXdnJ9kcpVotlHqwgrdlk8xqStLUbHLw7U1t7cG5zMB8_zB8jF0IPhaCJ3fLxWL-OpZc6LHUsYowPmJnUkQylKD18WGO3wds5P2K9xVxjFRyygbAFYcI9Bm7eSDaBNPCf1KzoDZwdRPMKvtBwaS03heuyGxb1OtzduJs6Wm070P2Nn1cTp7D-cvTbHI_DzNA0YaISsQOyPEcMU-jLAOA1CXAUXCdUJqhtRHmVkjKMEltFKMFtEolFpwDGLLb3d1NU3915FtTFT6jsrRrqjtvpAAhldCgevT6H7qqu2bdf2ekVApQJqh7Su6orKm9b8iZTVNUtvk2gputSfNr0mxNmr3JPnS1P92lFeWHyJ-3HrjcAQURHdYapeTI4QfjJ3TG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244352958</pqid></control><display><type>article</type><title>Deep FisherNet for Image Classification</title><source>IEEE Xplore (Online service)</source><creator>Tang, Peng ; Wang, Xinggang ; Shi, Baoguang ; Bai, Xiang ; Liu, Wenyu ; Tu, Zhuowen</creator><creatorcontrib>Tang, Peng ; Wang, Xinggang ; Shi, Baoguang ; Bai, Xiang ; Liu, Wenyu ; Tu, Zhuowen</creatorcontrib><description>Despite the great success of convolutional neural networks (CNNs) for the image classification task on data sets such as Cifar and ImageNet, CNN's representation power is still somewhat limited in dealing with images that have a large variation in size and clutter, where Fisher vector (FV) has shown to be an effective encoding strategy. FV encodes an image by aggregating local descriptors with a universal generative Gaussian mixture model (GMM). FV, however, has limited learning capability and its parameters are mostly fixed after constructing the codebook. To combine together the best of the two worlds, we propose in this brief a neural network structure with FV layer being part of an end-to-end trainable system that is differentiable; we name our network FisherNet that is learnable using back propagation. Our proposed FisherNet combines CNN training and FV encoding in a single end-to-end structure. We observe a clear advantage of FisherNet over plain CNN and standard FV in terms of both classification accuracy and computational efficiency on the challenging PASCAL visual object classes object classification and emotion image classification tasks.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2018.2874657</identifier><identifier>PMID: 30403638</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aggregates ; Artificial neural networks ; Back propagation networks ; Classification ; Clutter ; Coding ; Computer applications ; Convolutional neural networks (CNNs) ; end to end ; Feature extraction ; Fisher layer ; Fisher vector (FV) ; Image classification ; Image representation ; Learning systems ; Neural networks ; Probabilistic models ; Support vector machines ; Task analysis ; Training</subject><ispartof>IEEE transaction on neural networks and learning systems, 2019-07, Vol.30 (7), p.2244-2250</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-55417f3ef0d55db6cc333bf93051089ebc5aa65da12ec59ba675a35a449a3ff33</citedby><cites>FETCH-LOGICAL-c351t-55417f3ef0d55db6cc333bf93051089ebc5aa65da12ec59ba675a35a449a3ff33</cites><orcidid>0000-0001-7267-0394 ; 0000-0002-4582-7488 ; 0000-0002-1900-2124 ; 0000-0001-6732-7823 ; 0000-0001-5830-6377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8522050$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30403638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Peng</creatorcontrib><creatorcontrib>Wang, Xinggang</creatorcontrib><creatorcontrib>Shi, Baoguang</creatorcontrib><creatorcontrib>Bai, Xiang</creatorcontrib><creatorcontrib>Liu, Wenyu</creatorcontrib><creatorcontrib>Tu, Zhuowen</creatorcontrib><title>Deep FisherNet for Image Classification</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Despite the great success of convolutional neural networks (CNNs) for the image classification task on data sets such as Cifar and ImageNet, CNN's representation power is still somewhat limited in dealing with images that have a large variation in size and clutter, where Fisher vector (FV) has shown to be an effective encoding strategy. FV encodes an image by aggregating local descriptors with a universal generative Gaussian mixture model (GMM). FV, however, has limited learning capability and its parameters are mostly fixed after constructing the codebook. To combine together the best of the two worlds, we propose in this brief a neural network structure with FV layer being part of an end-to-end trainable system that is differentiable; we name our network FisherNet that is learnable using back propagation. Our proposed FisherNet combines CNN training and FV encoding in a single end-to-end structure. We observe a clear advantage of FisherNet over plain CNN and standard FV in terms of both classification accuracy and computational efficiency on the challenging PASCAL visual object classes object classification and emotion image classification tasks.</description><subject>Aggregates</subject><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Classification</subject><subject>Clutter</subject><subject>Coding</subject><subject>Computer applications</subject><subject>Convolutional neural networks (CNNs)</subject><subject>end to end</subject><subject>Feature extraction</subject><subject>Fisher layer</subject><subject>Fisher vector (FV)</subject><subject>Image classification</subject><subject>Image representation</subject><subject>Learning systems</subject><subject>Neural networks</subject><subject>Probabilistic models</subject><subject>Support vector machines</subject><subject>Task analysis</subject><subject>Training</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKw0AQhhdRrNS-gIIEPOgldXdnJ9kcpVotlHqwgrdlk8xqStLUbHLw7U1t7cG5zMB8_zB8jF0IPhaCJ3fLxWL-OpZc6LHUsYowPmJnUkQylKD18WGO3wds5P2K9xVxjFRyygbAFYcI9Bm7eSDaBNPCf1KzoDZwdRPMKvtBwaS03heuyGxb1OtzduJs6Wm070P2Nn1cTp7D-cvTbHI_DzNA0YaISsQOyPEcMU-jLAOA1CXAUXCdUJqhtRHmVkjKMEltFKMFtEolFpwDGLLb3d1NU3915FtTFT6jsrRrqjtvpAAhldCgevT6H7qqu2bdf2ekVApQJqh7Su6orKm9b8iZTVNUtvk2gputSfNr0mxNmr3JPnS1P92lFeWHyJ-3HrjcAQURHdYapeTI4QfjJ3TG</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Tang, Peng</creator><creator>Wang, Xinggang</creator><creator>Shi, Baoguang</creator><creator>Bai, Xiang</creator><creator>Liu, Wenyu</creator><creator>Tu, Zhuowen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7267-0394</orcidid><orcidid>https://orcid.org/0000-0002-4582-7488</orcidid><orcidid>https://orcid.org/0000-0002-1900-2124</orcidid><orcidid>https://orcid.org/0000-0001-6732-7823</orcidid><orcidid>https://orcid.org/0000-0001-5830-6377</orcidid></search><sort><creationdate>20190701</creationdate><title>Deep FisherNet for Image Classification</title><author>Tang, Peng ; Wang, Xinggang ; Shi, Baoguang ; Bai, Xiang ; Liu, Wenyu ; Tu, Zhuowen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-55417f3ef0d55db6cc333bf93051089ebc5aa65da12ec59ba675a35a449a3ff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aggregates</topic><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Classification</topic><topic>Clutter</topic><topic>Coding</topic><topic>Computer applications</topic><topic>Convolutional neural networks (CNNs)</topic><topic>end to end</topic><topic>Feature extraction</topic><topic>Fisher layer</topic><topic>Fisher vector (FV)</topic><topic>Image classification</topic><topic>Image representation</topic><topic>Learning systems</topic><topic>Neural networks</topic><topic>Probabilistic models</topic><topic>Support vector machines</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, Peng</creatorcontrib><creatorcontrib>Wang, Xinggang</creatorcontrib><creatorcontrib>Shi, Baoguang</creatorcontrib><creatorcontrib>Bai, Xiang</creatorcontrib><creatorcontrib>Liu, Wenyu</creatorcontrib><creatorcontrib>Tu, Zhuowen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Peng</au><au>Wang, Xinggang</au><au>Shi, Baoguang</au><au>Bai, Xiang</au><au>Liu, Wenyu</au><au>Tu, Zhuowen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep FisherNet for Image Classification</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>30</volume><issue>7</issue><spage>2244</spage><epage>2250</epage><pages>2244-2250</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Despite the great success of convolutional neural networks (CNNs) for the image classification task on data sets such as Cifar and ImageNet, CNN's representation power is still somewhat limited in dealing with images that have a large variation in size and clutter, where Fisher vector (FV) has shown to be an effective encoding strategy. FV encodes an image by aggregating local descriptors with a universal generative Gaussian mixture model (GMM). FV, however, has limited learning capability and its parameters are mostly fixed after constructing the codebook. To combine together the best of the two worlds, we propose in this brief a neural network structure with FV layer being part of an end-to-end trainable system that is differentiable; we name our network FisherNet that is learnable using back propagation. Our proposed FisherNet combines CNN training and FV encoding in a single end-to-end structure. We observe a clear advantage of FisherNet over plain CNN and standard FV in terms of both classification accuracy and computational efficiency on the challenging PASCAL visual object classes object classification and emotion image classification tasks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30403638</pmid><doi>10.1109/TNNLS.2018.2874657</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7267-0394</orcidid><orcidid>https://orcid.org/0000-0002-4582-7488</orcidid><orcidid>https://orcid.org/0000-0002-1900-2124</orcidid><orcidid>https://orcid.org/0000-0001-6732-7823</orcidid><orcidid>https://orcid.org/0000-0001-5830-6377</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2019-07, Vol.30 (7), p.2244-2250 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_ieee_primary_8522050 |
source | IEEE Xplore (Online service) |
subjects | Aggregates Artificial neural networks Back propagation networks Classification Clutter Coding Computer applications Convolutional neural networks (CNNs) end to end Feature extraction Fisher layer Fisher vector (FV) Image classification Image representation Learning systems Neural networks Probabilistic models Support vector machines Task analysis Training |
title | Deep FisherNet for Image Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20FisherNet%20for%20Image%20Classification&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Tang,%20Peng&rft.date=2019-07-01&rft.volume=30&rft.issue=7&rft.spage=2244&rft.epage=2250&rft.pages=2244-2250&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2018.2874657&rft_dat=%3Cproquest_ieee_%3E2131241834%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-55417f3ef0d55db6cc333bf93051089ebc5aa65da12ec59ba675a35a449a3ff33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2244352958&rft_id=info:pmid/30403638&rft_ieee_id=8522050&rfr_iscdi=true |