Loading…

Frequent Itemset Mining in Big Data With Effective Single Scan Algorithms

This paper considers frequent itemsets mining in transactional databases. It introduces a new accurate single scan approach for frequent itemset mining (SSFIM), a heuristic as an alternative approach (EA-SSFIM), as well as a parallel implementation on Hadoop clusters (MR-SSFIM). EA-SSFIM and MR-SSFI...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2018, Vol.6, p.68013-68026
Main Authors: Djenouri, Youcef, Djenouri, Djamel, Lin, Jerry Chun-Wei, Belhadi, Asma
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-a2f3f63e811903d278089c16453674903b43d071c5404a62cd177eec2885821d3
cites cdi_FETCH-LOGICAL-c408t-a2f3f63e811903d278089c16453674903b43d071c5404a62cd177eec2885821d3
container_end_page 68026
container_issue
container_start_page 68013
container_title IEEE access
container_volume 6
creator Djenouri, Youcef
Djenouri, Djamel
Lin, Jerry Chun-Wei
Belhadi, Asma
description This paper considers frequent itemsets mining in transactional databases. It introduces a new accurate single scan approach for frequent itemset mining (SSFIM), a heuristic as an alternative approach (EA-SSFIM), as well as a parallel implementation on Hadoop clusters (MR-SSFIM). EA-SSFIM and MR-SSFIM target sparse and big databases, respectively. The proposed approach (in all its variants) requires only one scan to extract the candidate itemsets, and it has the advantage to generate a fixed number of candidate itemsets independently from the value of the minimum support. This accelerates the scan process compared with existing approaches while dealing with sparse and big databases. Numerical results show that SSFIM outperforms the state-of-the-art FIM approaches while dealing with medium and large databases. Moreover, EA-SSFIM provides similar performance as SSFIM while considerably reducing the runtime for large databases. The results also reveal the superiority of MR-SSFIM compared with the existing HPC-based solutions for FIM using sparse and big databases.
doi_str_mv 10.1109/ACCESS.2018.2880275
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8529189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8529189</ieee_id><doaj_id>oai_doaj_org_article_632ccdace2d3477dbacbe8718dca6a0c</doaj_id><sourcerecordid>2455929741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a2f3f63e811903d278089c16453674903b43d071c5404a62cd177eec2885821d3</originalsourceid><addsrcrecordid>eNpNUV1PwjAUXYwmEuQX8NLEZ7BfW7tHnKAkGB_Q-NiU9m6WjA27YuK_tzBC7Mttzr3n3NOeJBkTPCUE5w-zopiv11OKiZxSKTEV6VUyoCTLJyxl2fW_-20y6rotjkdGKBWDZLnw8H2AJqBlgF0HAb26xjUVcg16dBV60kGjTxe-0LwswQT3A2gd-3UsRjdoVletj-1dd5fclLruYHSuw-RjMX8vXiart-dlMVtNDMcyTDQtWZkxkITkmFkqJJa5IRmP9gSP0IYziwUxKcdcZ9RYIgSAiS9LJSWWDaPnk65t9Vbtvdtp_6ta7dQJaH2ltA_O1KAyRo2x2gC1jAthN9psQAoirdGZxiZq3fdae9_GX-iC2rYH30T7ivI0zWkuOIlTrJ8yvu06D-VlK8HqGIHqI1DHCNQ5gsga9ywHABeGTGlOZM7-ACcUf_w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455929741</pqid></control><display><type>article</type><title>Frequent Itemset Mining in Big Data With Effective Single Scan Algorithms</title><source>IEEE Xplore Open Access Journals</source><creator>Djenouri, Youcef ; Djenouri, Djamel ; Lin, Jerry Chun-Wei ; Belhadi, Asma</creator><creatorcontrib>Djenouri, Youcef ; Djenouri, Djamel ; Lin, Jerry Chun-Wei ; Belhadi, Asma</creatorcontrib><description>This paper considers frequent itemsets mining in transactional databases. It introduces a new accurate single scan approach for frequent itemset mining (SSFIM), a heuristic as an alternative approach (EA-SSFIM), as well as a parallel implementation on Hadoop clusters (MR-SSFIM). EA-SSFIM and MR-SSFIM target sparse and big databases, respectively. The proposed approach (in all its variants) requires only one scan to extract the candidate itemsets, and it has the advantage to generate a fixed number of candidate itemsets independently from the value of the minimum support. This accelerates the scan process compared with existing approaches while dealing with sparse and big databases. Numerical results show that SSFIM outperforms the state-of-the-art FIM approaches while dealing with medium and large databases. Moreover, EA-SSFIM provides similar performance as SSFIM while considerably reducing the runtime for large databases. The results also reveal the superiority of MR-SSFIM compared with the existing HPC-based solutions for FIM using sparse and big databases.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2880275</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Apriori ; Big Data ; Clustering algorithms ; Computer science ; Data mining ; frequent itemset mining ; heuristic ; Itemsets ; parallel computing ; Runtime ; support computing</subject><ispartof>IEEE access, 2018, Vol.6, p.68013-68026</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a2f3f63e811903d278089c16453674903b43d071c5404a62cd177eec2885821d3</citedby><cites>FETCH-LOGICAL-c408t-a2f3f63e811903d278089c16453674903b43d071c5404a62cd177eec2885821d3</cites><orcidid>0000-0001-8768-9709 ; 0000-0003-0135-7450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8529189$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Djenouri, Youcef</creatorcontrib><creatorcontrib>Djenouri, Djamel</creatorcontrib><creatorcontrib>Lin, Jerry Chun-Wei</creatorcontrib><creatorcontrib>Belhadi, Asma</creatorcontrib><title>Frequent Itemset Mining in Big Data With Effective Single Scan Algorithms</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper considers frequent itemsets mining in transactional databases. It introduces a new accurate single scan approach for frequent itemset mining (SSFIM), a heuristic as an alternative approach (EA-SSFIM), as well as a parallel implementation on Hadoop clusters (MR-SSFIM). EA-SSFIM and MR-SSFIM target sparse and big databases, respectively. The proposed approach (in all its variants) requires only one scan to extract the candidate itemsets, and it has the advantage to generate a fixed number of candidate itemsets independently from the value of the minimum support. This accelerates the scan process compared with existing approaches while dealing with sparse and big databases. Numerical results show that SSFIM outperforms the state-of-the-art FIM approaches while dealing with medium and large databases. Moreover, EA-SSFIM provides similar performance as SSFIM while considerably reducing the runtime for large databases. The results also reveal the superiority of MR-SSFIM compared with the existing HPC-based solutions for FIM using sparse and big databases.</description><subject>Algorithms</subject><subject>Apriori</subject><subject>Big Data</subject><subject>Clustering algorithms</subject><subject>Computer science</subject><subject>Data mining</subject><subject>frequent itemset mining</subject><subject>heuristic</subject><subject>Itemsets</subject><subject>parallel computing</subject><subject>Runtime</subject><subject>support computing</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1PwjAUXYwmEuQX8NLEZ7BfW7tHnKAkGB_Q-NiU9m6WjA27YuK_tzBC7Mttzr3n3NOeJBkTPCUE5w-zopiv11OKiZxSKTEV6VUyoCTLJyxl2fW_-20y6rotjkdGKBWDZLnw8H2AJqBlgF0HAb26xjUVcg16dBV60kGjTxe-0LwswQT3A2gd-3UsRjdoVletj-1dd5fclLruYHSuw-RjMX8vXiart-dlMVtNDMcyTDQtWZkxkITkmFkqJJa5IRmP9gSP0IYziwUxKcdcZ9RYIgSAiS9LJSWWDaPnk65t9Vbtvdtp_6ta7dQJaH2ltA_O1KAyRo2x2gC1jAthN9psQAoirdGZxiZq3fdae9_GX-iC2rYH30T7ivI0zWkuOIlTrJ8yvu06D-VlK8HqGIHqI1DHCNQ5gsga9ywHABeGTGlOZM7-ACcUf_w</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Djenouri, Youcef</creator><creator>Djenouri, Djamel</creator><creator>Lin, Jerry Chun-Wei</creator><creator>Belhadi, Asma</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8768-9709</orcidid><orcidid>https://orcid.org/0000-0003-0135-7450</orcidid></search><sort><creationdate>2018</creationdate><title>Frequent Itemset Mining in Big Data With Effective Single Scan Algorithms</title><author>Djenouri, Youcef ; Djenouri, Djamel ; Lin, Jerry Chun-Wei ; Belhadi, Asma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a2f3f63e811903d278089c16453674903b43d071c5404a62cd177eec2885821d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Apriori</topic><topic>Big Data</topic><topic>Clustering algorithms</topic><topic>Computer science</topic><topic>Data mining</topic><topic>frequent itemset mining</topic><topic>heuristic</topic><topic>Itemsets</topic><topic>parallel computing</topic><topic>Runtime</topic><topic>support computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djenouri, Youcef</creatorcontrib><creatorcontrib>Djenouri, Djamel</creatorcontrib><creatorcontrib>Lin, Jerry Chun-Wei</creatorcontrib><creatorcontrib>Belhadi, Asma</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djenouri, Youcef</au><au>Djenouri, Djamel</au><au>Lin, Jerry Chun-Wei</au><au>Belhadi, Asma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequent Itemset Mining in Big Data With Effective Single Scan Algorithms</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018</date><risdate>2018</risdate><volume>6</volume><spage>68013</spage><epage>68026</epage><pages>68013-68026</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper considers frequent itemsets mining in transactional databases. It introduces a new accurate single scan approach for frequent itemset mining (SSFIM), a heuristic as an alternative approach (EA-SSFIM), as well as a parallel implementation on Hadoop clusters (MR-SSFIM). EA-SSFIM and MR-SSFIM target sparse and big databases, respectively. The proposed approach (in all its variants) requires only one scan to extract the candidate itemsets, and it has the advantage to generate a fixed number of candidate itemsets independently from the value of the minimum support. This accelerates the scan process compared with existing approaches while dealing with sparse and big databases. Numerical results show that SSFIM outperforms the state-of-the-art FIM approaches while dealing with medium and large databases. Moreover, EA-SSFIM provides similar performance as SSFIM while considerably reducing the runtime for large databases. The results also reveal the superiority of MR-SSFIM compared with the existing HPC-based solutions for FIM using sparse and big databases.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2880275</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8768-9709</orcidid><orcidid>https://orcid.org/0000-0003-0135-7450</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018, Vol.6, p.68013-68026
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8529189
source IEEE Xplore Open Access Journals
subjects Algorithms
Apriori
Big Data
Clustering algorithms
Computer science
Data mining
frequent itemset mining
heuristic
Itemsets
parallel computing
Runtime
support computing
title Frequent Itemset Mining in Big Data With Effective Single Scan Algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequent%20Itemset%20Mining%20in%20Big%20Data%20With%20Effective%20Single%20Scan%20Algorithms&rft.jtitle=IEEE%20access&rft.au=Djenouri,%20Youcef&rft.date=2018&rft.volume=6&rft.spage=68013&rft.epage=68026&rft.pages=68013-68026&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2880275&rft_dat=%3Cproquest_ieee_%3E2455929741%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-a2f3f63e811903d278089c16453674903b43d071c5404a62cd177eec2885821d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455929741&rft_id=info:pmid/&rft_ieee_id=8529189&rfr_iscdi=true