Loading…

Uncertainty Considerations for Ontological Decision-Making Support in Avionics Analytics

The Federal Aviation Administration (FAA) and the European Aviation Safety Agency (EASA) have an emerging interest in ontologies. A common ontology for avionics analytics can help pilots and Air Traffic Controllers (ATCs) make difficult decisions with increasingly-sophisticated avionics, densely-occ...

Full description

Saved in:
Bibliographic Details
Main Authors: Insaurralde, Carlos C., G. Costa, Paulo C., Blasch, Erik, Sampigethaya, Krishna
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 9
container_issue
container_start_page 1
container_title
container_volume
creator Insaurralde, Carlos C.
G. Costa, Paulo C.
Blasch, Erik
Sampigethaya, Krishna
description The Federal Aviation Administration (FAA) and the European Aviation Safety Agency (EASA) have an emerging interest in ontologies. A common ontology for avionics analytics can help pilots and Air Traffic Controllers (ATCs) make difficult decisions with increasingly-sophisticated avionics, densely-occupied airspaces, and progressively-adverse weather. The connected airspace sets a context of big data, enriched features, and information uncertainty. This paper proposes to endow an Avionics Analytics Ontology (AAO) with semantic uncertainty to improve decision-making capabilities. The proposed approach incorporates the Uncertainty Representation and Reasoning Evaluation Framework (URREF) into the AAO for input information. The AAO focuses on veracity as a key component of information credibility to deal with uncertainty. The URREF assessment aims to enhance avionics analytics when considering semantic and physical data sources. Thus, situation AWareness (SAW) and Situation Assessment (SA) as well as Situation Understanding (SU) in information fusion are ultimately enhanced by means of statistical metrics of veracity. This paper also shows experimental results from two application scenarios. Concluding remarks and future research directions are also presented.
doi_str_mv 10.1109/DASC.2018.8569816
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8569816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8569816</ieee_id><sourcerecordid>8569816</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8baf1b044c3849f9bf4d475efd4a248346eea0637ce1564b6a65ce37c0ef65e53</originalsourceid><addsrcrecordid>eNotUNtKwzAYjoLgnHsA8SYv0Jo0hyaXpfMEk11sgncjTf-MaE1LEoW9vQV39R35Lj6E7igpKSX6Yd3s2rIiVJVKSK2ovEA3VDAlOaVVfYkWFRWiqCuir9EqpU9CCCVzVfAF-ngPFmI2PuQTbseQfA_RZD8z7MaItyGPw3j01gx4DdanOSnezJcPR7z7maYxZuwDbn5n39uEm2CGU57ZLbpyZkiwOuMS7Z8e9-1Lsdk-v7bNpvCa5EJ1xtGOcG6Z4trpzvGe1wJcz03FFeMSwBDJagtUSN5JI4WFWRJwUoBgS3T_P-sB4DBF_23i6XD-gf0BuABTRQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Uncertainty Considerations for Ontological Decision-Making Support in Avionics Analytics</title><source>IEEE Xplore All Conference Series</source><creator>Insaurralde, Carlos C. ; G. Costa, Paulo C. ; Blasch, Erik ; Sampigethaya, Krishna</creator><creatorcontrib>Insaurralde, Carlos C. ; G. Costa, Paulo C. ; Blasch, Erik ; Sampigethaya, Krishna</creatorcontrib><description>The Federal Aviation Administration (FAA) and the European Aviation Safety Agency (EASA) have an emerging interest in ontologies. A common ontology for avionics analytics can help pilots and Air Traffic Controllers (ATCs) make difficult decisions with increasingly-sophisticated avionics, densely-occupied airspaces, and progressively-adverse weather. The connected airspace sets a context of big data, enriched features, and information uncertainty. This paper proposes to endow an Avionics Analytics Ontology (AAO) with semantic uncertainty to improve decision-making capabilities. The proposed approach incorporates the Uncertainty Representation and Reasoning Evaluation Framework (URREF) into the AAO for input information. The AAO focuses on veracity as a key component of information credibility to deal with uncertainty. The URREF assessment aims to enhance avionics analytics when considering semantic and physical data sources. Thus, situation AWareness (SAW) and Situation Assessment (SA) as well as Situation Understanding (SU) in information fusion are ultimately enhanced by means of statistical metrics of veracity. This paper also shows experimental results from two application scenarios. Concluding remarks and future research directions are also presented.</description><identifier>EISSN: 2155-7209</identifier><identifier>EISBN: 1538641127</identifier><identifier>EISBN: 9781538641125</identifier><identifier>DOI: 10.1109/DASC.2018.8569816</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace electronics ; Aircraft ; avionics analytics ; Decision making ; Meteorology ; Ontologies ; ontology ; Semantics ; situation analysis ; Uncertainty</subject><ispartof>2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), 2018, p.1-9</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8569816$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,23911,23912,25121,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8569816$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Insaurralde, Carlos C.</creatorcontrib><creatorcontrib>G. Costa, Paulo C.</creatorcontrib><creatorcontrib>Blasch, Erik</creatorcontrib><creatorcontrib>Sampigethaya, Krishna</creatorcontrib><title>Uncertainty Considerations for Ontological Decision-Making Support in Avionics Analytics</title><title>2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC)</title><addtitle>DASC</addtitle><description>The Federal Aviation Administration (FAA) and the European Aviation Safety Agency (EASA) have an emerging interest in ontologies. A common ontology for avionics analytics can help pilots and Air Traffic Controllers (ATCs) make difficult decisions with increasingly-sophisticated avionics, densely-occupied airspaces, and progressively-adverse weather. The connected airspace sets a context of big data, enriched features, and information uncertainty. This paper proposes to endow an Avionics Analytics Ontology (AAO) with semantic uncertainty to improve decision-making capabilities. The proposed approach incorporates the Uncertainty Representation and Reasoning Evaluation Framework (URREF) into the AAO for input information. The AAO focuses on veracity as a key component of information credibility to deal with uncertainty. The URREF assessment aims to enhance avionics analytics when considering semantic and physical data sources. Thus, situation AWareness (SAW) and Situation Assessment (SA) as well as Situation Understanding (SU) in information fusion are ultimately enhanced by means of statistical metrics of veracity. This paper also shows experimental results from two application scenarios. Concluding remarks and future research directions are also presented.</description><subject>Aerospace electronics</subject><subject>Aircraft</subject><subject>avionics analytics</subject><subject>Decision making</subject><subject>Meteorology</subject><subject>Ontologies</subject><subject>ontology</subject><subject>Semantics</subject><subject>situation analysis</subject><subject>Uncertainty</subject><issn>2155-7209</issn><isbn>1538641127</isbn><isbn>9781538641125</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUNtKwzAYjoLgnHsA8SYv0Jo0hyaXpfMEk11sgncjTf-MaE1LEoW9vQV39R35Lj6E7igpKSX6Yd3s2rIiVJVKSK2ovEA3VDAlOaVVfYkWFRWiqCuir9EqpU9CCCVzVfAF-ngPFmI2PuQTbseQfA_RZD8z7MaItyGPw3j01gx4DdanOSnezJcPR7z7maYxZuwDbn5n39uEm2CGU57ZLbpyZkiwOuMS7Z8e9-1Lsdk-v7bNpvCa5EJ1xtGOcG6Z4trpzvGe1wJcz03FFeMSwBDJagtUSN5JI4WFWRJwUoBgS3T_P-sB4DBF_23i6XD-gf0BuABTRQ</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Insaurralde, Carlos C.</creator><creator>G. Costa, Paulo C.</creator><creator>Blasch, Erik</creator><creator>Sampigethaya, Krishna</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201809</creationdate><title>Uncertainty Considerations for Ontological Decision-Making Support in Avionics Analytics</title><author>Insaurralde, Carlos C. ; G. Costa, Paulo C. ; Blasch, Erik ; Sampigethaya, Krishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8baf1b044c3849f9bf4d475efd4a248346eea0637ce1564b6a65ce37c0ef65e53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerospace electronics</topic><topic>Aircraft</topic><topic>avionics analytics</topic><topic>Decision making</topic><topic>Meteorology</topic><topic>Ontologies</topic><topic>ontology</topic><topic>Semantics</topic><topic>situation analysis</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Insaurralde, Carlos C.</creatorcontrib><creatorcontrib>G. Costa, Paulo C.</creatorcontrib><creatorcontrib>Blasch, Erik</creatorcontrib><creatorcontrib>Sampigethaya, Krishna</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Insaurralde, Carlos C.</au><au>G. Costa, Paulo C.</au><au>Blasch, Erik</au><au>Sampigethaya, Krishna</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Uncertainty Considerations for Ontological Decision-Making Support in Avionics Analytics</atitle><btitle>2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC)</btitle><stitle>DASC</stitle><date>2018-09</date><risdate>2018</risdate><spage>1</spage><epage>9</epage><pages>1-9</pages><eissn>2155-7209</eissn><eisbn>1538641127</eisbn><eisbn>9781538641125</eisbn><abstract>The Federal Aviation Administration (FAA) and the European Aviation Safety Agency (EASA) have an emerging interest in ontologies. A common ontology for avionics analytics can help pilots and Air Traffic Controllers (ATCs) make difficult decisions with increasingly-sophisticated avionics, densely-occupied airspaces, and progressively-adverse weather. The connected airspace sets a context of big data, enriched features, and information uncertainty. This paper proposes to endow an Avionics Analytics Ontology (AAO) with semantic uncertainty to improve decision-making capabilities. The proposed approach incorporates the Uncertainty Representation and Reasoning Evaluation Framework (URREF) into the AAO for input information. The AAO focuses on veracity as a key component of information credibility to deal with uncertainty. The URREF assessment aims to enhance avionics analytics when considering semantic and physical data sources. Thus, situation AWareness (SAW) and Situation Assessment (SA) as well as Situation Understanding (SU) in information fusion are ultimately enhanced by means of statistical metrics of veracity. This paper also shows experimental results from two application scenarios. Concluding remarks and future research directions are also presented.</abstract><pub>IEEE</pub><doi>10.1109/DASC.2018.8569816</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2155-7209
ispartof 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), 2018, p.1-9
issn 2155-7209
language eng
recordid cdi_ieee_primary_8569816
source IEEE Xplore All Conference Series
subjects Aerospace electronics
Aircraft
avionics analytics
Decision making
Meteorology
Ontologies
ontology
Semantics
situation analysis
Uncertainty
title Uncertainty Considerations for Ontological Decision-Making Support in Avionics Analytics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Uncertainty%20Considerations%20for%20Ontological%20Decision-Making%20Support%20in%20Avionics%20Analytics&rft.btitle=2018%20IEEE/AIAA%2037th%20Digital%20Avionics%20Systems%20Conference%20(DASC)&rft.au=Insaurralde,%20Carlos%20C.&rft.date=2018-09&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.eissn=2155-7209&rft_id=info:doi/10.1109/DASC.2018.8569816&rft.eisbn=1538641127&rft.eisbn_list=9781538641125&rft_dat=%3Cieee_CHZPO%3E8569816%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-8baf1b044c3849f9bf4d475efd4a248346eea0637ce1564b6a65ce37c0ef65e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8569816&rfr_iscdi=true