Loading…
NTIRE 2018 Challenge on Image Dehazing: Methods and Results
This paper reviews the first challenge on image dehazing (restoration of rich details in hazy image) with focus on proposed solutions and results. The challenge had 2 tracks. Track 1 employed the indoor images (using I-HAZE dataset), while Track 2 outdoor images (using O-HAZE dataset). The hazy imag...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper reviews the first challenge on image dehazing (restoration of rich details in hazy image) with focus on proposed solutions and results. The challenge had 2 tracks. Track 1 employed the indoor images (using I-HAZE dataset), while Track 2 outdoor images (using O-HAZE dataset). The hazy images have been captured in presence of real haze, generated by professional haze machines. I-HAZE dataset contains 35 scenes that correspond to indoor domestic environments, with objects with different colors and specularities. O-HAZE contains 45 different outdoor scenes depicting the same visual content recorded in haze-free and hazy conditions, under the same illumination parameters. The dehazing process was learnable through provided pairs of haze-free and hazy train images. Each track had ~120 registered participants and 21 teams competed in the final testing phase. They gauge the state-of-the-art in image dehazing. |
---|---|
ISSN: | 2160-7516 |
DOI: | 10.1109/CVPRW.2018.00134 |