Loading…
NTIRE 2018 Challenge on Image Dehazing: Methods and Results
This paper reviews the first challenge on image dehazing (restoration of rich details in hazy image) with focus on proposed solutions and results. The challenge had 2 tracks. Track 1 employed the indoor images (using I-HAZE dataset), while Track 2 outdoor images (using O-HAZE dataset). The hazy imag...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c222t-b6e05f9ae278180e3bee06733062de0fb08a53fc2c24e13c846b252d6aa49afb3 |
---|---|
cites | |
container_end_page | 100410 |
container_issue | |
container_start_page | 1004 |
container_title | |
container_volume | |
creator | Ancuti, Cosmin Zhao, Ruhao Ma, Xiaoping Qin, Yong Jia, Limin Friedel, Klaus Ki, Sehwan Sim, Hyeonjun Choi, Jae-Seok Kim, Sooye Seo, Soomin Ancuti, Codruta O. Kim, Saehun Kim, Munchurl Mondal, Ranjan Santra, Sanchayan Chanda, Bhabatosh Liu, Jinlin Mei, Kangfu Li, Juncheng Luyao Fang, Faming Timofte, Radu Jiang, Aiwen Qu, Xiaochao Liu, Ting Wang, Pengfei Sun, Biao Deng, Jiangfan Zhao, Yuhang Hong, Ming Huang, Jingying Chen, Yizhi Van Gool, Luc Chen, Erin Yu, Xiaoli Wu, Tingting Genc, Anil Engin, Deniz Ekenel, Hazim Kemal Liu, Wenzhe Tong, Tong Li, Gen Gao, Qinquan Zhang, Lei Li, Zhan Tang, Daofa Chen, Yuling Huo, Ziying Alvarez-Gila, Aitor Galdran, Adrian Bria, Alessandro Vazquez-Corral, Javier Bertalmo, Marcelo Demir, H. Seckin Yang, Ming-Hsuan Adil, Omer Faruk Phung, Huynh Xuan Jin, Xin Chen, Jiale Shan, Chaowei Chen, Zhibo Patel, Vishal M. Zhang, He Sindagi, Vishwanath A. |
description | This paper reviews the first challenge on image dehazing (restoration of rich details in hazy image) with focus on proposed solutions and results. The challenge had 2 tracks. Track 1 employed the indoor images (using I-HAZE dataset), while Track 2 outdoor images (using O-HAZE dataset). The hazy images have been captured in presence of real haze, generated by professional haze machines. I-HAZE dataset contains 35 scenes that correspond to indoor domestic environments, with objects with different colors and specularities. O-HAZE contains 45 different outdoor scenes depicting the same visual content recorded in haze-free and hazy conditions, under the same illumination parameters. The dehazing process was learnable through provided pairs of haze-free and hazy train images. Each track had ~120 registered participants and 21 teams competed in the final testing phase. They gauge the state-of-the-art in image dehazing. |
doi_str_mv | 10.1109/CVPRW.2018.00134 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8575287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8575287</ieee_id><sourcerecordid>8575287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-b6e05f9ae278180e3bee06733062de0fb08a53fc2c24e13c846b252d6aa49afb3</originalsourceid><addsrcrecordid>eNotjk1Lw0AURUdBsNTsBTfzBxLfvMlMJrqS2GqgfhCqLstL8tJE0lQ6caG_3oiu7uXAPVwhzhVESkF6mb0-F28RgnIRgNLxkQjSxCmjnbUKAI7FDJWFMDHKnorA-_cJKnDGpHomrh_XebGQv3OZtdT3PGxZ7geZ72gqt9zSdzdsr-QDj-2-9pKGWhbsP_vRn4mThnrPwX_Oxctysc7uw9XTXZ7drMIKEcewtAymSYlxuuWAdckMNtEaLNYMTQmOjG4qrDBmpSsX2xIN1pYoTqkp9Vxc_Hk7Zt58HLodHb42ziQGXaJ_ACV9Rio</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>NTIRE 2018 Challenge on Image Dehazing: Methods and Results</title><source>IEEE Xplore All Conference Series</source><creator>Ancuti, Cosmin ; Zhao, Ruhao ; Ma, Xiaoping ; Qin, Yong ; Jia, Limin ; Friedel, Klaus ; Ki, Sehwan ; Sim, Hyeonjun ; Choi, Jae-Seok ; Kim, Sooye ; Seo, Soomin ; Ancuti, Codruta O. ; Kim, Saehun ; Kim, Munchurl ; Mondal, Ranjan ; Santra, Sanchayan ; Chanda, Bhabatosh ; Liu, Jinlin ; Mei, Kangfu ; Li, Juncheng ; Luyao ; Fang, Faming ; Timofte, Radu ; Jiang, Aiwen ; Qu, Xiaochao ; Liu, Ting ; Wang, Pengfei ; Sun, Biao ; Deng, Jiangfan ; Zhao, Yuhang ; Hong, Ming ; Huang, Jingying ; Chen, Yizhi ; Van Gool, Luc ; Chen, Erin ; Yu, Xiaoli ; Wu, Tingting ; Genc, Anil ; Engin, Deniz ; Ekenel, Hazim Kemal ; Liu, Wenzhe ; Tong, Tong ; Li, Gen ; Gao, Qinquan ; Zhang, Lei ; Li, Zhan ; Tang, Daofa ; Chen, Yuling ; Huo, Ziying ; Alvarez-Gila, Aitor ; Galdran, Adrian ; Bria, Alessandro ; Vazquez-Corral, Javier ; Bertalmo, Marcelo ; Demir, H. Seckin ; Yang, Ming-Hsuan ; Adil, Omer Faruk ; Phung, Huynh Xuan ; Jin, Xin ; Chen, Jiale ; Shan, Chaowei ; Chen, Zhibo ; Patel, Vishal M. ; Zhang, He ; Sindagi, Vishwanath A.</creator><creatorcontrib>Ancuti, Cosmin ; Zhao, Ruhao ; Ma, Xiaoping ; Qin, Yong ; Jia, Limin ; Friedel, Klaus ; Ki, Sehwan ; Sim, Hyeonjun ; Choi, Jae-Seok ; Kim, Sooye ; Seo, Soomin ; Ancuti, Codruta O. ; Kim, Saehun ; Kim, Munchurl ; Mondal, Ranjan ; Santra, Sanchayan ; Chanda, Bhabatosh ; Liu, Jinlin ; Mei, Kangfu ; Li, Juncheng ; Luyao ; Fang, Faming ; Timofte, Radu ; Jiang, Aiwen ; Qu, Xiaochao ; Liu, Ting ; Wang, Pengfei ; Sun, Biao ; Deng, Jiangfan ; Zhao, Yuhang ; Hong, Ming ; Huang, Jingying ; Chen, Yizhi ; Van Gool, Luc ; Chen, Erin ; Yu, Xiaoli ; Wu, Tingting ; Genc, Anil ; Engin, Deniz ; Ekenel, Hazim Kemal ; Liu, Wenzhe ; Tong, Tong ; Li, Gen ; Gao, Qinquan ; Zhang, Lei ; Li, Zhan ; Tang, Daofa ; Chen, Yuling ; Huo, Ziying ; Alvarez-Gila, Aitor ; Galdran, Adrian ; Bria, Alessandro ; Vazquez-Corral, Javier ; Bertalmo, Marcelo ; Demir, H. Seckin ; Yang, Ming-Hsuan ; Adil, Omer Faruk ; Phung, Huynh Xuan ; Jin, Xin ; Chen, Jiale ; Shan, Chaowei ; Chen, Zhibo ; Patel, Vishal M. ; Zhang, He ; Sindagi, Vishwanath A.</creatorcontrib><description>This paper reviews the first challenge on image dehazing (restoration of rich details in hazy image) with focus on proposed solutions and results. The challenge had 2 tracks. Track 1 employed the indoor images (using I-HAZE dataset), while Track 2 outdoor images (using O-HAZE dataset). The hazy images have been captured in presence of real haze, generated by professional haze machines. I-HAZE dataset contains 35 scenes that correspond to indoor domestic environments, with objects with different colors and specularities. O-HAZE contains 45 different outdoor scenes depicting the same visual content recorded in haze-free and hazy conditions, under the same illumination parameters. The dehazing process was learnable through provided pairs of haze-free and hazy train images. Each track had ~120 registered participants and 21 teams competed in the final testing phase. They gauge the state-of-the-art in image dehazing.</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 9781538661000</identifier><identifier>EISBN: 1538661004</identifier><identifier>DOI: 10.1109/CVPRW.2018.00134</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Generators ; Image color analysis ; Image restoration ; Lighting ; Manuals ; Meters</subject><ispartof>2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2018, p.1004-100410</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-b6e05f9ae278180e3bee06733062de0fb08a53fc2c24e13c846b252d6aa49afb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8575287$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8575287$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ancuti, Cosmin</creatorcontrib><creatorcontrib>Zhao, Ruhao</creatorcontrib><creatorcontrib>Ma, Xiaoping</creatorcontrib><creatorcontrib>Qin, Yong</creatorcontrib><creatorcontrib>Jia, Limin</creatorcontrib><creatorcontrib>Friedel, Klaus</creatorcontrib><creatorcontrib>Ki, Sehwan</creatorcontrib><creatorcontrib>Sim, Hyeonjun</creatorcontrib><creatorcontrib>Choi, Jae-Seok</creatorcontrib><creatorcontrib>Kim, Sooye</creatorcontrib><creatorcontrib>Seo, Soomin</creatorcontrib><creatorcontrib>Ancuti, Codruta O.</creatorcontrib><creatorcontrib>Kim, Saehun</creatorcontrib><creatorcontrib>Kim, Munchurl</creatorcontrib><creatorcontrib>Mondal, Ranjan</creatorcontrib><creatorcontrib>Santra, Sanchayan</creatorcontrib><creatorcontrib>Chanda, Bhabatosh</creatorcontrib><creatorcontrib>Liu, Jinlin</creatorcontrib><creatorcontrib>Mei, Kangfu</creatorcontrib><creatorcontrib>Li, Juncheng</creatorcontrib><creatorcontrib>Luyao</creatorcontrib><creatorcontrib>Fang, Faming</creatorcontrib><creatorcontrib>Timofte, Radu</creatorcontrib><creatorcontrib>Jiang, Aiwen</creatorcontrib><creatorcontrib>Qu, Xiaochao</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Sun, Biao</creatorcontrib><creatorcontrib>Deng, Jiangfan</creatorcontrib><creatorcontrib>Zhao, Yuhang</creatorcontrib><creatorcontrib>Hong, Ming</creatorcontrib><creatorcontrib>Huang, Jingying</creatorcontrib><creatorcontrib>Chen, Yizhi</creatorcontrib><creatorcontrib>Van Gool, Luc</creatorcontrib><creatorcontrib>Chen, Erin</creatorcontrib><creatorcontrib>Yu, Xiaoli</creatorcontrib><creatorcontrib>Wu, Tingting</creatorcontrib><creatorcontrib>Genc, Anil</creatorcontrib><creatorcontrib>Engin, Deniz</creatorcontrib><creatorcontrib>Ekenel, Hazim Kemal</creatorcontrib><creatorcontrib>Liu, Wenzhe</creatorcontrib><creatorcontrib>Tong, Tong</creatorcontrib><creatorcontrib>Li, Gen</creatorcontrib><creatorcontrib>Gao, Qinquan</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Li, Zhan</creatorcontrib><creatorcontrib>Tang, Daofa</creatorcontrib><creatorcontrib>Chen, Yuling</creatorcontrib><creatorcontrib>Huo, Ziying</creatorcontrib><creatorcontrib>Alvarez-Gila, Aitor</creatorcontrib><creatorcontrib>Galdran, Adrian</creatorcontrib><creatorcontrib>Bria, Alessandro</creatorcontrib><creatorcontrib>Vazquez-Corral, Javier</creatorcontrib><creatorcontrib>Bertalmo, Marcelo</creatorcontrib><creatorcontrib>Demir, H. Seckin</creatorcontrib><creatorcontrib>Yang, Ming-Hsuan</creatorcontrib><creatorcontrib>Adil, Omer Faruk</creatorcontrib><creatorcontrib>Phung, Huynh Xuan</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Chen, Jiale</creatorcontrib><creatorcontrib>Shan, Chaowei</creatorcontrib><creatorcontrib>Chen, Zhibo</creatorcontrib><creatorcontrib>Patel, Vishal M.</creatorcontrib><creatorcontrib>Zhang, He</creatorcontrib><creatorcontrib>Sindagi, Vishwanath A.</creatorcontrib><title>NTIRE 2018 Challenge on Image Dehazing: Methods and Results</title><title>2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>This paper reviews the first challenge on image dehazing (restoration of rich details in hazy image) with focus on proposed solutions and results. The challenge had 2 tracks. Track 1 employed the indoor images (using I-HAZE dataset), while Track 2 outdoor images (using O-HAZE dataset). The hazy images have been captured in presence of real haze, generated by professional haze machines. I-HAZE dataset contains 35 scenes that correspond to indoor domestic environments, with objects with different colors and specularities. O-HAZE contains 45 different outdoor scenes depicting the same visual content recorded in haze-free and hazy conditions, under the same illumination parameters. The dehazing process was learnable through provided pairs of haze-free and hazy train images. Each track had ~120 registered participants and 21 teams competed in the final testing phase. They gauge the state-of-the-art in image dehazing.</description><subject>Cameras</subject><subject>Generators</subject><subject>Image color analysis</subject><subject>Image restoration</subject><subject>Lighting</subject><subject>Manuals</subject><subject>Meters</subject><issn>2160-7516</issn><isbn>9781538661000</isbn><isbn>1538661004</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjk1Lw0AURUdBsNTsBTfzBxLfvMlMJrqS2GqgfhCqLstL8tJE0lQ6caG_3oiu7uXAPVwhzhVESkF6mb0-F28RgnIRgNLxkQjSxCmjnbUKAI7FDJWFMDHKnorA-_cJKnDGpHomrh_XebGQv3OZtdT3PGxZ7geZ72gqt9zSdzdsr-QDj-2-9pKGWhbsP_vRn4mThnrPwX_Oxctysc7uw9XTXZ7drMIKEcewtAymSYlxuuWAdckMNtEaLNYMTQmOjG4qrDBmpSsX2xIN1pYoTqkp9Vxc_Hk7Zt58HLodHb42ziQGXaJ_ACV9Rio</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Ancuti, Cosmin</creator><creator>Zhao, Ruhao</creator><creator>Ma, Xiaoping</creator><creator>Qin, Yong</creator><creator>Jia, Limin</creator><creator>Friedel, Klaus</creator><creator>Ki, Sehwan</creator><creator>Sim, Hyeonjun</creator><creator>Choi, Jae-Seok</creator><creator>Kim, Sooye</creator><creator>Seo, Soomin</creator><creator>Ancuti, Codruta O.</creator><creator>Kim, Saehun</creator><creator>Kim, Munchurl</creator><creator>Mondal, Ranjan</creator><creator>Santra, Sanchayan</creator><creator>Chanda, Bhabatosh</creator><creator>Liu, Jinlin</creator><creator>Mei, Kangfu</creator><creator>Li, Juncheng</creator><creator>Luyao</creator><creator>Fang, Faming</creator><creator>Timofte, Radu</creator><creator>Jiang, Aiwen</creator><creator>Qu, Xiaochao</creator><creator>Liu, Ting</creator><creator>Wang, Pengfei</creator><creator>Sun, Biao</creator><creator>Deng, Jiangfan</creator><creator>Zhao, Yuhang</creator><creator>Hong, Ming</creator><creator>Huang, Jingying</creator><creator>Chen, Yizhi</creator><creator>Van Gool, Luc</creator><creator>Chen, Erin</creator><creator>Yu, Xiaoli</creator><creator>Wu, Tingting</creator><creator>Genc, Anil</creator><creator>Engin, Deniz</creator><creator>Ekenel, Hazim Kemal</creator><creator>Liu, Wenzhe</creator><creator>Tong, Tong</creator><creator>Li, Gen</creator><creator>Gao, Qinquan</creator><creator>Zhang, Lei</creator><creator>Li, Zhan</creator><creator>Tang, Daofa</creator><creator>Chen, Yuling</creator><creator>Huo, Ziying</creator><creator>Alvarez-Gila, Aitor</creator><creator>Galdran, Adrian</creator><creator>Bria, Alessandro</creator><creator>Vazquez-Corral, Javier</creator><creator>Bertalmo, Marcelo</creator><creator>Demir, H. Seckin</creator><creator>Yang, Ming-Hsuan</creator><creator>Adil, Omer Faruk</creator><creator>Phung, Huynh Xuan</creator><creator>Jin, Xin</creator><creator>Chen, Jiale</creator><creator>Shan, Chaowei</creator><creator>Chen, Zhibo</creator><creator>Patel, Vishal M.</creator><creator>Zhang, He</creator><creator>Sindagi, Vishwanath A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201806</creationdate><title>NTIRE 2018 Challenge on Image Dehazing: Methods and Results</title><author>Ancuti, Cosmin ; Zhao, Ruhao ; Ma, Xiaoping ; Qin, Yong ; Jia, Limin ; Friedel, Klaus ; Ki, Sehwan ; Sim, Hyeonjun ; Choi, Jae-Seok ; Kim, Sooye ; Seo, Soomin ; Ancuti, Codruta O. ; Kim, Saehun ; Kim, Munchurl ; Mondal, Ranjan ; Santra, Sanchayan ; Chanda, Bhabatosh ; Liu, Jinlin ; Mei, Kangfu ; Li, Juncheng ; Luyao ; Fang, Faming ; Timofte, Radu ; Jiang, Aiwen ; Qu, Xiaochao ; Liu, Ting ; Wang, Pengfei ; Sun, Biao ; Deng, Jiangfan ; Zhao, Yuhang ; Hong, Ming ; Huang, Jingying ; Chen, Yizhi ; Van Gool, Luc ; Chen, Erin ; Yu, Xiaoli ; Wu, Tingting ; Genc, Anil ; Engin, Deniz ; Ekenel, Hazim Kemal ; Liu, Wenzhe ; Tong, Tong ; Li, Gen ; Gao, Qinquan ; Zhang, Lei ; Li, Zhan ; Tang, Daofa ; Chen, Yuling ; Huo, Ziying ; Alvarez-Gila, Aitor ; Galdran, Adrian ; Bria, Alessandro ; Vazquez-Corral, Javier ; Bertalmo, Marcelo ; Demir, H. Seckin ; Yang, Ming-Hsuan ; Adil, Omer Faruk ; Phung, Huynh Xuan ; Jin, Xin ; Chen, Jiale ; Shan, Chaowei ; Chen, Zhibo ; Patel, Vishal M. ; Zhang, He ; Sindagi, Vishwanath A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-b6e05f9ae278180e3bee06733062de0fb08a53fc2c24e13c846b252d6aa49afb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cameras</topic><topic>Generators</topic><topic>Image color analysis</topic><topic>Image restoration</topic><topic>Lighting</topic><topic>Manuals</topic><topic>Meters</topic><toplevel>online_resources</toplevel><creatorcontrib>Ancuti, Cosmin</creatorcontrib><creatorcontrib>Zhao, Ruhao</creatorcontrib><creatorcontrib>Ma, Xiaoping</creatorcontrib><creatorcontrib>Qin, Yong</creatorcontrib><creatorcontrib>Jia, Limin</creatorcontrib><creatorcontrib>Friedel, Klaus</creatorcontrib><creatorcontrib>Ki, Sehwan</creatorcontrib><creatorcontrib>Sim, Hyeonjun</creatorcontrib><creatorcontrib>Choi, Jae-Seok</creatorcontrib><creatorcontrib>Kim, Sooye</creatorcontrib><creatorcontrib>Seo, Soomin</creatorcontrib><creatorcontrib>Ancuti, Codruta O.</creatorcontrib><creatorcontrib>Kim, Saehun</creatorcontrib><creatorcontrib>Kim, Munchurl</creatorcontrib><creatorcontrib>Mondal, Ranjan</creatorcontrib><creatorcontrib>Santra, Sanchayan</creatorcontrib><creatorcontrib>Chanda, Bhabatosh</creatorcontrib><creatorcontrib>Liu, Jinlin</creatorcontrib><creatorcontrib>Mei, Kangfu</creatorcontrib><creatorcontrib>Li, Juncheng</creatorcontrib><creatorcontrib>Luyao</creatorcontrib><creatorcontrib>Fang, Faming</creatorcontrib><creatorcontrib>Timofte, Radu</creatorcontrib><creatorcontrib>Jiang, Aiwen</creatorcontrib><creatorcontrib>Qu, Xiaochao</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Sun, Biao</creatorcontrib><creatorcontrib>Deng, Jiangfan</creatorcontrib><creatorcontrib>Zhao, Yuhang</creatorcontrib><creatorcontrib>Hong, Ming</creatorcontrib><creatorcontrib>Huang, Jingying</creatorcontrib><creatorcontrib>Chen, Yizhi</creatorcontrib><creatorcontrib>Van Gool, Luc</creatorcontrib><creatorcontrib>Chen, Erin</creatorcontrib><creatorcontrib>Yu, Xiaoli</creatorcontrib><creatorcontrib>Wu, Tingting</creatorcontrib><creatorcontrib>Genc, Anil</creatorcontrib><creatorcontrib>Engin, Deniz</creatorcontrib><creatorcontrib>Ekenel, Hazim Kemal</creatorcontrib><creatorcontrib>Liu, Wenzhe</creatorcontrib><creatorcontrib>Tong, Tong</creatorcontrib><creatorcontrib>Li, Gen</creatorcontrib><creatorcontrib>Gao, Qinquan</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Li, Zhan</creatorcontrib><creatorcontrib>Tang, Daofa</creatorcontrib><creatorcontrib>Chen, Yuling</creatorcontrib><creatorcontrib>Huo, Ziying</creatorcontrib><creatorcontrib>Alvarez-Gila, Aitor</creatorcontrib><creatorcontrib>Galdran, Adrian</creatorcontrib><creatorcontrib>Bria, Alessandro</creatorcontrib><creatorcontrib>Vazquez-Corral, Javier</creatorcontrib><creatorcontrib>Bertalmo, Marcelo</creatorcontrib><creatorcontrib>Demir, H. Seckin</creatorcontrib><creatorcontrib>Yang, Ming-Hsuan</creatorcontrib><creatorcontrib>Adil, Omer Faruk</creatorcontrib><creatorcontrib>Phung, Huynh Xuan</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Chen, Jiale</creatorcontrib><creatorcontrib>Shan, Chaowei</creatorcontrib><creatorcontrib>Chen, Zhibo</creatorcontrib><creatorcontrib>Patel, Vishal M.</creatorcontrib><creatorcontrib>Zhang, He</creatorcontrib><creatorcontrib>Sindagi, Vishwanath A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ancuti, Cosmin</au><au>Zhao, Ruhao</au><au>Ma, Xiaoping</au><au>Qin, Yong</au><au>Jia, Limin</au><au>Friedel, Klaus</au><au>Ki, Sehwan</au><au>Sim, Hyeonjun</au><au>Choi, Jae-Seok</au><au>Kim, Sooye</au><au>Seo, Soomin</au><au>Ancuti, Codruta O.</au><au>Kim, Saehun</au><au>Kim, Munchurl</au><au>Mondal, Ranjan</au><au>Santra, Sanchayan</au><au>Chanda, Bhabatosh</au><au>Liu, Jinlin</au><au>Mei, Kangfu</au><au>Li, Juncheng</au><au>Luyao</au><au>Fang, Faming</au><au>Timofte, Radu</au><au>Jiang, Aiwen</au><au>Qu, Xiaochao</au><au>Liu, Ting</au><au>Wang, Pengfei</au><au>Sun, Biao</au><au>Deng, Jiangfan</au><au>Zhao, Yuhang</au><au>Hong, Ming</au><au>Huang, Jingying</au><au>Chen, Yizhi</au><au>Van Gool, Luc</au><au>Chen, Erin</au><au>Yu, Xiaoli</au><au>Wu, Tingting</au><au>Genc, Anil</au><au>Engin, Deniz</au><au>Ekenel, Hazim Kemal</au><au>Liu, Wenzhe</au><au>Tong, Tong</au><au>Li, Gen</au><au>Gao, Qinquan</au><au>Zhang, Lei</au><au>Li, Zhan</au><au>Tang, Daofa</au><au>Chen, Yuling</au><au>Huo, Ziying</au><au>Alvarez-Gila, Aitor</au><au>Galdran, Adrian</au><au>Bria, Alessandro</au><au>Vazquez-Corral, Javier</au><au>Bertalmo, Marcelo</au><au>Demir, H. Seckin</au><au>Yang, Ming-Hsuan</au><au>Adil, Omer Faruk</au><au>Phung, Huynh Xuan</au><au>Jin, Xin</au><au>Chen, Jiale</au><au>Shan, Chaowei</au><au>Chen, Zhibo</au><au>Patel, Vishal M.</au><au>Zhang, He</au><au>Sindagi, Vishwanath A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>NTIRE 2018 Challenge on Image Dehazing: Methods and Results</atitle><btitle>2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2018-06</date><risdate>2018</risdate><spage>1004</spage><epage>100410</epage><pages>1004-100410</pages><eissn>2160-7516</eissn><eisbn>9781538661000</eisbn><eisbn>1538661004</eisbn><coden>IEEPAD</coden><abstract>This paper reviews the first challenge on image dehazing (restoration of rich details in hazy image) with focus on proposed solutions and results. The challenge had 2 tracks. Track 1 employed the indoor images (using I-HAZE dataset), while Track 2 outdoor images (using O-HAZE dataset). The hazy images have been captured in presence of real haze, generated by professional haze machines. I-HAZE dataset contains 35 scenes that correspond to indoor domestic environments, with objects with different colors and specularities. O-HAZE contains 45 different outdoor scenes depicting the same visual content recorded in haze-free and hazy conditions, under the same illumination parameters. The dehazing process was learnable through provided pairs of haze-free and hazy train images. Each track had ~120 registered participants and 21 teams competed in the final testing phase. They gauge the state-of-the-art in image dehazing.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW.2018.00134</doi><tpages>99407</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2160-7516 |
ispartof | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2018, p.1004-100410 |
issn | 2160-7516 |
language | eng |
recordid | cdi_ieee_primary_8575287 |
source | IEEE Xplore All Conference Series |
subjects | Cameras Generators Image color analysis Image restoration Lighting Manuals Meters |
title | NTIRE 2018 Challenge on Image Dehazing: Methods and Results |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A25%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=NTIRE%202018%20Challenge%20on%20Image%20Dehazing:%20Methods%20and%20Results&rft.btitle=2018%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Ancuti,%20Cosmin&rft.date=2018-06&rft.spage=1004&rft.epage=100410&rft.pages=1004-100410&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW.2018.00134&rft.eisbn=9781538661000&rft.eisbn_list=1538661004&rft_dat=%3Cieee_CHZPO%3E8575287%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-b6e05f9ae278180e3bee06733062de0fb08a53fc2c24e13c846b252d6aa49afb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8575287&rfr_iscdi=true |