Loading…
Land Cover Classification from Satellite Imagery with U-Net and Lovász-Softmax Loss
The land cover classification task of the DeepGlobe Challenge presents significant obstacles even to state of the art segmentation models due to a small amount of data, incomplete and sometimes incorrect labeling, and highly imbalanced classes. In this work, we show an approach based on the U-Net ar...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2574 |
container_issue | |
container_start_page | 257 |
container_title | |
container_volume | |
creator | Rakhlin, Alexander Davydow, Alex Nikolenko, Sergey |
description | The land cover classification task of the DeepGlobe Challenge presents significant obstacles even to state of the art segmentation models due to a small amount of data, incomplete and sometimes incorrect labeling, and highly imbalanced classes. In this work, we show an approach based on the U-Net architecture with the Lov´asz-Softmax loss that successfully alleviates these problems; we compare several different convolutional architectures for U-Net encoders. |
doi_str_mv | 10.1109/CVPRW.2018.00048 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8575508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8575508</ieee_id><sourcerecordid>8575508</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9de019fc667ca9715f1e06ba3a7138a8cecab48f9f0ff3829b934a3d5993a9d3</originalsourceid><addsrcrecordid>eNotjMtKxDAYRqMgOIyzF9zkBVrzN81tKcXLQFFxqi6Hv22ikXYqTRhnfBufxRezoqvDd-A7hJwCSwGYOS-e7h-e04yBThljuT4gC6M0CK6lhMkcklkGkiVKgDwmixDeJglMC2H4jFQlblpaDFs70qLDELzzDUY_bKgbh56uMNqu89HSZY8vdtzTDx9f6WNyayP9vZbD9vsrfCarwcUed9MO4YQcOeyCXfxzTqqry6q4Scq762VxUSYelIiJaS0D4xopVYNGgXBgmayRowKuUTe2wTrXzjjmHNeZqQ3PkbfCGI6m5XNy9pf11tr1--h7HPdrLZQQTPMfTexRuA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Land Cover Classification from Satellite Imagery with U-Net and Lovász-Softmax Loss</title><source>IEEE Xplore All Conference Series</source><creator>Rakhlin, Alexander ; Davydow, Alex ; Nikolenko, Sergey</creator><creatorcontrib>Rakhlin, Alexander ; Davydow, Alex ; Nikolenko, Sergey</creatorcontrib><description>The land cover classification task of the DeepGlobe Challenge presents significant obstacles even to state of the art segmentation models due to a small amount of data, incomplete and sometimes incorrect labeling, and highly imbalanced classes. In this work, we show an approach based on the U-Net architecture with the Lov´asz-Softmax loss that successfully alleviates these problems; we compare several different convolutional architectures for U-Net encoders.</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 9781538661000</identifier><identifier>EISBN: 1538661004</identifier><identifier>DOI: 10.1109/CVPRW.2018.00048</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; Computer vision ; Image segmentation ; Satellites ; Stochastic processes ; Task analysis ; Training</subject><ispartof>2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2018, p.257-2574</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8575508$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8575508$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rakhlin, Alexander</creatorcontrib><creatorcontrib>Davydow, Alex</creatorcontrib><creatorcontrib>Nikolenko, Sergey</creatorcontrib><title>Land Cover Classification from Satellite Imagery with U-Net and Lovász-Softmax Loss</title><title>2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>The land cover classification task of the DeepGlobe Challenge presents significant obstacles even to state of the art segmentation models due to a small amount of data, incomplete and sometimes incorrect labeling, and highly imbalanced classes. In this work, we show an approach based on the U-Net architecture with the Lov´asz-Softmax loss that successfully alleviates these problems; we compare several different convolutional architectures for U-Net encoders.</description><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Image segmentation</subject><subject>Satellites</subject><subject>Stochastic processes</subject><subject>Task analysis</subject><subject>Training</subject><issn>2160-7516</issn><isbn>9781538661000</isbn><isbn>1538661004</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtKxDAYRqMgOIyzF9zkBVrzN81tKcXLQFFxqi6Hv22ikXYqTRhnfBufxRezoqvDd-A7hJwCSwGYOS-e7h-e04yBThljuT4gC6M0CK6lhMkcklkGkiVKgDwmixDeJglMC2H4jFQlblpaDFs70qLDELzzDUY_bKgbh56uMNqu89HSZY8vdtzTDx9f6WNyayP9vZbD9vsrfCarwcUed9MO4YQcOeyCXfxzTqqry6q4Scq762VxUSYelIiJaS0D4xopVYNGgXBgmayRowKuUTe2wTrXzjjmHNeZqQ3PkbfCGI6m5XNy9pf11tr1--h7HPdrLZQQTPMfTexRuA</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Rakhlin, Alexander</creator><creator>Davydow, Alex</creator><creator>Nikolenko, Sergey</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201806</creationdate><title>Land Cover Classification from Satellite Imagery with U-Net and Lovász-Softmax Loss</title><author>Rakhlin, Alexander ; Davydow, Alex ; Nikolenko, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9de019fc667ca9715f1e06ba3a7138a8cecab48f9f0ff3829b934a3d5993a9d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Image segmentation</topic><topic>Satellites</topic><topic>Stochastic processes</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Rakhlin, Alexander</creatorcontrib><creatorcontrib>Davydow, Alex</creatorcontrib><creatorcontrib>Nikolenko, Sergey</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rakhlin, Alexander</au><au>Davydow, Alex</au><au>Nikolenko, Sergey</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Land Cover Classification from Satellite Imagery with U-Net and Lovász-Softmax Loss</atitle><btitle>2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2018-06</date><risdate>2018</risdate><spage>257</spage><epage>2574</epage><pages>257-2574</pages><eissn>2160-7516</eissn><eisbn>9781538661000</eisbn><eisbn>1538661004</eisbn><coden>IEEPAD</coden><abstract>The land cover classification task of the DeepGlobe Challenge presents significant obstacles even to state of the art segmentation models due to a small amount of data, incomplete and sometimes incorrect labeling, and highly imbalanced classes. In this work, we show an approach based on the U-Net architecture with the Lov´asz-Softmax loss that successfully alleviates these problems; we compare several different convolutional architectures for U-Net encoders.</abstract><pub>IEEE</pub><doi>10.1109/CVPRW.2018.00048</doi><tpages>2318</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2160-7516 |
ispartof | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2018, p.257-2574 |
issn | 2160-7516 |
language | eng |
recordid | cdi_ieee_primary_8575508 |
source | IEEE Xplore All Conference Series |
subjects | Computer architecture Computer vision Image segmentation Satellites Stochastic processes Task analysis Training |
title | Land Cover Classification from Satellite Imagery with U-Net and Lovász-Softmax Loss |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A59%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Land%20Cover%20Classification%20from%20Satellite%20Imagery%20with%20U-Net%20and%20Lov%C3%A1sz-Softmax%20Loss&rft.btitle=2018%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Rakhlin,%20Alexander&rft.date=2018-06&rft.spage=257&rft.epage=2574&rft.pages=257-2574&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW.2018.00048&rft.eisbn=9781538661000&rft.eisbn_list=1538661004&rft_dat=%3Cieee_CHZPO%3E8575508%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9de019fc667ca9715f1e06ba3a7138a8cecab48f9f0ff3829b934a3d5993a9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8575508&rfr_iscdi=true |