Loading…
Monte-Carlo Planning for Team Re-Formation Under Uncertainty: Model and Properties
Teamwork in decentralized systems plays a central role in recent artificial intelligence advances, such as in applications to disaster response. Decentralized partially observable Markov decision processes (Dec-POMDPs) have emerged as the de facto standard mathematical framework to study and optimal...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 465 |
container_issue | |
container_start_page | 458 |
container_title | |
container_volume | |
creator | Cohen, Jonathan Mouaddib, Abdel-Illah |
description | Teamwork in decentralized systems plays a central role in recent artificial intelligence advances, such as in applications to disaster response. Decentralized partially observable Markov decision processes (Dec-POMDPs) have emerged as the de facto standard mathematical framework to study and optimally plan in sequentially decentralized multiagent systems under uncertainty. In this work, we focus our analysis on team formation and reformation in Decentralized POMDPs with a new model coined Team-POMDPs. We present some interesting structural properties of this model inherited from the field of cooperative game theory. We introduce a Monte Carlo-based planning algorithm to learn locally optimal team-reformation policies that tell our agents how to dynamically rearrange in order to better deal with the evolution of the task at hand. By reforming the team during execution, our experiments show that we are able to achieve higher expected long-term rewards than with stationary teams. |
doi_str_mv | 10.1109/ICTAI.2018.00077 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8576075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8576075</ieee_id><sourcerecordid>8576075</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b3ec7641b367015b2e8d6d6e5a6f49e7ffc3d43dd7af6ea08ab7034b65a161933</originalsourceid><addsrcrecordid>eNotjE1rAjEUANNCodZ6L_SSP7D2ZbPJ2_QmSz8EpSJ6lrfmbUlZE8nuxX9fob3MwBxGiCcFc6XAvSyb3WI5L0HVcwBAvBEzh7UyurZYVc7dikmp0RSgHN6Lh2H4ASjBlHoitusURy4ayn2Sm55iDPFbdinLHdNJbrl4T_lEY0hR7qPnfOWR80ghjpdXuU6ee0nRy01O52sPPDyKu476gWf_nor9-9uu-SxWXx_LZrEqgkIzFq3mI9pKtdoiKNOWXHvrLRuyXeUYu-6ofaW9R-osE9TUIuiqtYaUVU7rqXj--wZmPpxzOFG-HGqDFtDoX6oCT8I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Monte-Carlo Planning for Team Re-Formation Under Uncertainty: Model and Properties</title><source>IEEE Xplore All Conference Series</source><creator>Cohen, Jonathan ; Mouaddib, Abdel-Illah</creator><creatorcontrib>Cohen, Jonathan ; Mouaddib, Abdel-Illah</creatorcontrib><description>Teamwork in decentralized systems plays a central role in recent artificial intelligence advances, such as in applications to disaster response. Decentralized partially observable Markov decision processes (Dec-POMDPs) have emerged as the de facto standard mathematical framework to study and optimally plan in sequentially decentralized multiagent systems under uncertainty. In this work, we focus our analysis on team formation and reformation in Decentralized POMDPs with a new model coined Team-POMDPs. We present some interesting structural properties of this model inherited from the field of cooperative game theory. We introduce a Monte Carlo-based planning algorithm to learn locally optimal team-reformation policies that tell our agents how to dynamically rearrange in order to better deal with the evolution of the task at hand. By reforming the team during execution, our experiments show that we are able to achieve higher expected long-term rewards than with stationary teams.</description><identifier>EISSN: 2375-0197</identifier><identifier>EISBN: 9781538674499</identifier><identifier>EISBN: 1538674491</identifier><identifier>DOI: 10.1109/ICTAI.2018.00077</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Complexity theory ; History ; Monte Carlo methods ; Monte-Carlo Tree Search ; Multiagent systems ; Planning ; Planning under uncertainty ; Task analysis ; Team formation ; Uncertainty</subject><ispartof>2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), 2018, p.458-465</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8576075$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8576075$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cohen, Jonathan</creatorcontrib><creatorcontrib>Mouaddib, Abdel-Illah</creatorcontrib><title>Monte-Carlo Planning for Team Re-Formation Under Uncertainty: Model and Properties</title><title>2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)</title><addtitle>TAI</addtitle><description>Teamwork in decentralized systems plays a central role in recent artificial intelligence advances, such as in applications to disaster response. Decentralized partially observable Markov decision processes (Dec-POMDPs) have emerged as the de facto standard mathematical framework to study and optimally plan in sequentially decentralized multiagent systems under uncertainty. In this work, we focus our analysis on team formation and reformation in Decentralized POMDPs with a new model coined Team-POMDPs. We present some interesting structural properties of this model inherited from the field of cooperative game theory. We introduce a Monte Carlo-based planning algorithm to learn locally optimal team-reformation policies that tell our agents how to dynamically rearrange in order to better deal with the evolution of the task at hand. By reforming the team during execution, our experiments show that we are able to achieve higher expected long-term rewards than with stationary teams.</description><subject>Complexity theory</subject><subject>History</subject><subject>Monte Carlo methods</subject><subject>Monte-Carlo Tree Search</subject><subject>Multiagent systems</subject><subject>Planning</subject><subject>Planning under uncertainty</subject><subject>Task analysis</subject><subject>Team formation</subject><subject>Uncertainty</subject><issn>2375-0197</issn><isbn>9781538674499</isbn><isbn>1538674491</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1rAjEUANNCodZ6L_SSP7D2ZbPJ2_QmSz8EpSJ6lrfmbUlZE8nuxX9fob3MwBxGiCcFc6XAvSyb3WI5L0HVcwBAvBEzh7UyurZYVc7dikmp0RSgHN6Lh2H4ASjBlHoitusURy4ayn2Sm55iDPFbdinLHdNJbrl4T_lEY0hR7qPnfOWR80ghjpdXuU6ee0nRy01O52sPPDyKu476gWf_nor9-9uu-SxWXx_LZrEqgkIzFq3mI9pKtdoiKNOWXHvrLRuyXeUYu-6ofaW9R-osE9TUIuiqtYaUVU7rqXj--wZmPpxzOFG-HGqDFtDoX6oCT8I</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Cohen, Jonathan</creator><creator>Mouaddib, Abdel-Illah</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201811</creationdate><title>Monte-Carlo Planning for Team Re-Formation Under Uncertainty: Model and Properties</title><author>Cohen, Jonathan ; Mouaddib, Abdel-Illah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b3ec7641b367015b2e8d6d6e5a6f49e7ffc3d43dd7af6ea08ab7034b65a161933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Complexity theory</topic><topic>History</topic><topic>Monte Carlo methods</topic><topic>Monte-Carlo Tree Search</topic><topic>Multiagent systems</topic><topic>Planning</topic><topic>Planning under uncertainty</topic><topic>Task analysis</topic><topic>Team formation</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Jonathan</creatorcontrib><creatorcontrib>Mouaddib, Abdel-Illah</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cohen, Jonathan</au><au>Mouaddib, Abdel-Illah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Monte-Carlo Planning for Team Re-Formation Under Uncertainty: Model and Properties</atitle><btitle>2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)</btitle><stitle>TAI</stitle><date>2018-11</date><risdate>2018</risdate><spage>458</spage><epage>465</epage><pages>458-465</pages><eissn>2375-0197</eissn><eisbn>9781538674499</eisbn><eisbn>1538674491</eisbn><coden>IEEPAD</coden><abstract>Teamwork in decentralized systems plays a central role in recent artificial intelligence advances, such as in applications to disaster response. Decentralized partially observable Markov decision processes (Dec-POMDPs) have emerged as the de facto standard mathematical framework to study and optimally plan in sequentially decentralized multiagent systems under uncertainty. In this work, we focus our analysis on team formation and reformation in Decentralized POMDPs with a new model coined Team-POMDPs. We present some interesting structural properties of this model inherited from the field of cooperative game theory. We introduce a Monte Carlo-based planning algorithm to learn locally optimal team-reformation policies that tell our agents how to dynamically rearrange in order to better deal with the evolution of the task at hand. By reforming the team during execution, our experiments show that we are able to achieve higher expected long-term rewards than with stationary teams.</abstract><pub>IEEE</pub><doi>10.1109/ICTAI.2018.00077</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2375-0197 |
ispartof | 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), 2018, p.458-465 |
issn | 2375-0197 |
language | eng |
recordid | cdi_ieee_primary_8576075 |
source | IEEE Xplore All Conference Series |
subjects | Complexity theory History Monte Carlo methods Monte-Carlo Tree Search Multiagent systems Planning Planning under uncertainty Task analysis Team formation Uncertainty |
title | Monte-Carlo Planning for Team Re-Formation Under Uncertainty: Model and Properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Monte-Carlo%20Planning%20for%20Team%20Re-Formation%20Under%20Uncertainty:%20Model%20and%20Properties&rft.btitle=2018%20IEEE%2030th%20International%20Conference%20on%20Tools%20with%20Artificial%20Intelligence%20(ICTAI)&rft.au=Cohen,%20Jonathan&rft.date=2018-11&rft.spage=458&rft.epage=465&rft.pages=458-465&rft.eissn=2375-0197&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICTAI.2018.00077&rft.eisbn=9781538674499&rft.eisbn_list=1538674491&rft_dat=%3Cieee_CHZPO%3E8576075%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-b3ec7641b367015b2e8d6d6e5a6f49e7ffc3d43dd7af6ea08ab7034b65a161933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8576075&rfr_iscdi=true |