Loading…
Plan and Goal Recognition as HTN Planning
Plan-and Goal Recognition (PGR) is the task of inferring the goals and plans of an agent based on its actions. Traditional approaches in PGR are based on a plan library including pairs of plans and corresponding goals. In recent years, the field successfully exploited the performance of planning sys...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Plan-and Goal Recognition (PGR) is the task of inferring the goals and plans of an agent based on its actions. Traditional approaches in PGR are based on a plan library including pairs of plans and corresponding goals. In recent years, the field successfully exploited the performance of planning systems for PGR. The main benefits are the presence of efficient solvers and well-established, compact formalisms for behavior representation. However, the expressivity of the STRIPS planning models used so far is limited, and models in PGR are often structured in a hierarchical way. We present the approach Plan and Goal Recognition as HTN Planning that combines the expressive but still compact grammar-like HTN representation with the advantage of using unmodified, off-the-shelf planning systems for PGR. Our evaluation shows that - using our approach - current planning systems are able to handle large models with thousands of possible goals, that the approach results in high recognition rates, and that it works even when the environment is partially observable, i.e., if the observer might miss observations. |
---|---|
ISSN: | 2375-0197 |
DOI: | 10.1109/ICTAI.2018.00078 |