Loading…
Towards provably-secure analog and mixed-signal locking against overproduction
Similar to digital circuits, analog and mixed-signal (AMS) circuits are also susceptible to supply-chain attacks such as piracy, overproduction, and Trojan insertion. However, unlike digital circuits, supply-chain security of AMS circuits is less explored. In this work, we propose to perform "l...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Similar to digital circuits, analog and mixed-signal (AMS) circuits are also susceptible to supply-chain attacks such as piracy, overproduction, and Trojan insertion. However, unlike digital circuits, supply-chain security of AMS circuits is less explored. In this work, we propose to perform "logic locking" on digital section of the AMS circuits. The idea is to make the analog design intentionally suffer from the effects of process variations, which impede the operation of the circuit. Only on applying the correct key, the effect of process variations are mitigated, and the analog circuit performs as desired. We provide the theoretical guarantees of the security of the circuit, and along with simulation results for the band-pass filter, low-noise amplifier, and low-dropout regulator, we also show experimental results of our technique on a band-pass filter. |
---|---|
ISSN: | 1558-2434 |
DOI: | 10.1145/3240765.3240858 |