Loading…
Towards language independent acoustic modeling
We describe procedures and experimental results using speech from diverse source languages to build an ASR system for a single target language. This work is intended to improve ASR in languages for which large amounts of training data are not available. We have developed both knowledge-based and aut...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c221t-60f8ef80dd3eec8da1cda3cdd9dbdba2a6bb89286dc7394c5534c3741eb9878b3 |
---|---|
cites | |
container_end_page | II1032 vol.2 |
container_issue | |
container_start_page | II1029 |
container_title | |
container_volume | 2 |
creator | Byrne, W. Beyerlein, P. Huerta, J.M. Khudanpur, S. Marthi, B. Morgan, J. Peterek, N. Picone, J. Vergyri, D. Wang, T. |
description | We describe procedures and experimental results using speech from diverse source languages to build an ASR system for a single target language. This work is intended to improve ASR in languages for which large amounts of training data are not available. We have developed both knowledge-based and automatic methods to map phonetic units from the source languages to the target language. We employed HMM adaptation techniques and discriminative model combination to combine acoustic models from the individual source languages for recognition of speech in the target language. Experiments are described in which Czech Broadcast News is transcribed using acoustic models trained from small amounts of Czech read speech augmented by English, Spanish, Russian, and Mandarin acoustic models. |
doi_str_mv | 10.1109/ICASSP.2000.859138 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_859138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>859138</ieee_id><sourcerecordid>859138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-60f8ef80dd3eec8da1cda3cdd9dbdba2a6bb89286dc7394c5534c3741eb9878b3</originalsourceid><addsrcrecordid>eNotj91Kw0AUhBd_wFj7Ar3KCyTuT5I951KKWqGg0Areld09JyGSJiWbIr69gQrDzNU3zAixUjJXSuLj2_ppt_vItZQyhxKVgSuRaGMxUyi_rsUSLchZptJo9I1IVKllVqkC78R9jN8zB7aAROT74ceNFNPO9c3ZNZy2PfGJZ-un1IXhHKc2pMeBuGv75kHc1q6LvPzPhfh8ed6vN9n2_XXetM2C1mrKKlkD1yCJDHMAciqQM4EIyZN32lXeA2qoKFiDRShLUwRjC8UewYI3C7G69LbMfDiN7dGNv4fLU_MH41ZG0w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Towards language independent acoustic modeling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Byrne, W. ; Beyerlein, P. ; Huerta, J.M. ; Khudanpur, S. ; Marthi, B. ; Morgan, J. ; Peterek, N. ; Picone, J. ; Vergyri, D. ; Wang, T.</creator><creatorcontrib>Byrne, W. ; Beyerlein, P. ; Huerta, J.M. ; Khudanpur, S. ; Marthi, B. ; Morgan, J. ; Peterek, N. ; Picone, J. ; Vergyri, D. ; Wang, T.</creatorcontrib><description>We describe procedures and experimental results using speech from diverse source languages to build an ASR system for a single target language. This work is intended to improve ASR in languages for which large amounts of training data are not available. We have developed both knowledge-based and automatic methods to map phonetic units from the source languages to the target language. We employed HMM adaptation techniques and discriminative model combination to combine acoustic models from the individual source languages for recognition of speech in the target language. Experiments are described in which Czech Broadcast News is transcribed using acoustic models trained from small amounts of Czech read speech augmented by English, Spanish, Russian, and Mandarin acoustic models.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780362932</identifier><identifier>ISBN: 0780362934</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2000.859138</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustical engineering ; Asia ; Automatic speech recognition ; Europe ; Hidden Markov models ; Loudspeakers ; Natural languages ; Speech recognition ; Statistical analysis ; Training data</subject><ispartof>2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), 2000, Vol.2, p.II1029-II1032 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-60f8ef80dd3eec8da1cda3cdd9dbdba2a6bb89286dc7394c5534c3741eb9878b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/859138$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/859138$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Byrne, W.</creatorcontrib><creatorcontrib>Beyerlein, P.</creatorcontrib><creatorcontrib>Huerta, J.M.</creatorcontrib><creatorcontrib>Khudanpur, S.</creatorcontrib><creatorcontrib>Marthi, B.</creatorcontrib><creatorcontrib>Morgan, J.</creatorcontrib><creatorcontrib>Peterek, N.</creatorcontrib><creatorcontrib>Picone, J.</creatorcontrib><creatorcontrib>Vergyri, D.</creatorcontrib><creatorcontrib>Wang, T.</creatorcontrib><title>Towards language independent acoustic modeling</title><title>2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)</title><addtitle>ICASSP</addtitle><description>We describe procedures and experimental results using speech from diverse source languages to build an ASR system for a single target language. This work is intended to improve ASR in languages for which large amounts of training data are not available. We have developed both knowledge-based and automatic methods to map phonetic units from the source languages to the target language. We employed HMM adaptation techniques and discriminative model combination to combine acoustic models from the individual source languages for recognition of speech in the target language. Experiments are described in which Czech Broadcast News is transcribed using acoustic models trained from small amounts of Czech read speech augmented by English, Spanish, Russian, and Mandarin acoustic models.</description><subject>Acoustical engineering</subject><subject>Asia</subject><subject>Automatic speech recognition</subject><subject>Europe</subject><subject>Hidden Markov models</subject><subject>Loudspeakers</subject><subject>Natural languages</subject><subject>Speech recognition</subject><subject>Statistical analysis</subject><subject>Training data</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780362932</isbn><isbn>0780362934</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91Kw0AUhBd_wFj7Ar3KCyTuT5I951KKWqGg0Areld09JyGSJiWbIr69gQrDzNU3zAixUjJXSuLj2_ppt_vItZQyhxKVgSuRaGMxUyi_rsUSLchZptJo9I1IVKllVqkC78R9jN8zB7aAROT74ceNFNPO9c3ZNZy2PfGJZ-un1IXhHKc2pMeBuGv75kHc1q6LvPzPhfh8ed6vN9n2_XXetM2C1mrKKlkD1yCJDHMAciqQM4EIyZN32lXeA2qoKFiDRShLUwRjC8UewYI3C7G69LbMfDiN7dGNv4fLU_MH41ZG0w</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Byrne, W.</creator><creator>Beyerlein, P.</creator><creator>Huerta, J.M.</creator><creator>Khudanpur, S.</creator><creator>Marthi, B.</creator><creator>Morgan, J.</creator><creator>Peterek, N.</creator><creator>Picone, J.</creator><creator>Vergyri, D.</creator><creator>Wang, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Towards language independent acoustic modeling</title><author>Byrne, W. ; Beyerlein, P. ; Huerta, J.M. ; Khudanpur, S. ; Marthi, B. ; Morgan, J. ; Peterek, N. ; Picone, J. ; Vergyri, D. ; Wang, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-60f8ef80dd3eec8da1cda3cdd9dbdba2a6bb89286dc7394c5534c3741eb9878b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Acoustical engineering</topic><topic>Asia</topic><topic>Automatic speech recognition</topic><topic>Europe</topic><topic>Hidden Markov models</topic><topic>Loudspeakers</topic><topic>Natural languages</topic><topic>Speech recognition</topic><topic>Statistical analysis</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Byrne, W.</creatorcontrib><creatorcontrib>Beyerlein, P.</creatorcontrib><creatorcontrib>Huerta, J.M.</creatorcontrib><creatorcontrib>Khudanpur, S.</creatorcontrib><creatorcontrib>Marthi, B.</creatorcontrib><creatorcontrib>Morgan, J.</creatorcontrib><creatorcontrib>Peterek, N.</creatorcontrib><creatorcontrib>Picone, J.</creatorcontrib><creatorcontrib>Vergyri, D.</creatorcontrib><creatorcontrib>Wang, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Byrne, W.</au><au>Beyerlein, P.</au><au>Huerta, J.M.</au><au>Khudanpur, S.</au><au>Marthi, B.</au><au>Morgan, J.</au><au>Peterek, N.</au><au>Picone, J.</au><au>Vergyri, D.</au><au>Wang, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Towards language independent acoustic modeling</atitle><btitle>2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)</btitle><stitle>ICASSP</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>II1029</spage><epage>II1032 vol.2</epage><pages>II1029-II1032 vol.2</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780362932</isbn><isbn>0780362934</isbn><abstract>We describe procedures and experimental results using speech from diverse source languages to build an ASR system for a single target language. This work is intended to improve ASR in languages for which large amounts of training data are not available. We have developed both knowledge-based and automatic methods to map phonetic units from the source languages to the target language. We employed HMM adaptation techniques and discriminative model combination to combine acoustic models from the individual source languages for recognition of speech in the target language. Experiments are described in which Czech Broadcast News is transcribed using acoustic models trained from small amounts of Czech read speech augmented by English, Spanish, Russian, and Mandarin acoustic models.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2000.859138</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), 2000, Vol.2, p.II1029-II1032 vol.2 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_859138 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acoustical engineering Asia Automatic speech recognition Europe Hidden Markov models Loudspeakers Natural languages Speech recognition Statistical analysis Training data |
title | Towards language independent acoustic modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Towards%20language%20independent%20acoustic%20modeling&rft.btitle=2000%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing.%20Proceedings%20(Cat.%20No.00CH37100)&rft.au=Byrne,%20W.&rft.date=2000&rft.volume=2&rft.spage=II1029&rft.epage=II1032%20vol.2&rft.pages=II1029-II1032%20vol.2&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780362932&rft.isbn_list=0780362934&rft_id=info:doi/10.1109/ICASSP.2000.859138&rft_dat=%3Cieee_6IE%3E859138%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-60f8ef80dd3eec8da1cda3cdd9dbdba2a6bb89286dc7394c5534c3741eb9878b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=859138&rfr_iscdi=true |