Loading…
Maximum likelihood discriminant feature spaces
Linear discriminant analysis (LDA) is known to be inappropriate for the case of classes with unequal sample covariances. There has been an interest in generalizing LDA to heteroscedastic discriminant analysis (HDA) by removing the equal within-class covariance constraint. This paper presents a new a...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | II1132 vol.2 |
container_issue | |
container_start_page | II1129 |
container_title | |
container_volume | 2 |
creator | Saon, G. Padmanabhan, M. Gopinath, R. Chen, S. |
description | Linear discriminant analysis (LDA) is known to be inappropriate for the case of classes with unequal sample covariances. There has been an interest in generalizing LDA to heteroscedastic discriminant analysis (HDA) by removing the equal within-class covariance constraint. This paper presents a new approach to HDA by defining an objective function which maximizes the class discrimination in the projected subspace while ignoring the rejected dimensions. Moreover, we investigate the link between discrimination and the likelihood of the projected samples and show that HDA can be viewed as a constrained ML projection for a full covariance Gaussian model, the constraint being given by the maximization of the projected between-class scatter volume. It is shown that, under diagonal covariance Gaussian modeling constraints, applying a diagonalizing linear transformation (MLLT) to the HDA space results in increased classification accuracy even though HDA alone actually degrades the recognition performance. Experiments performed on the Switchboard and Voicemail databases show a 10%-13% relative improvement in the word error rate over standard cepstral processing. |
doi_str_mv | 10.1109/ICASSP.2000.859163 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_859163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>859163</ieee_id><sourcerecordid>859163</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-8e7101062dd892b8f4a4bae7f08dc7a2d9072eecfc9e9b8fdb0fa7d0e78c5f5d3</originalsourceid><addsrcrecordid>eNotj91KAzEUhIM_4Fr7Ar3aF8h6kuxuci6lqBUqClXwrmSTE4zutmWzBX17AxUG5mKY4RvGFgIqIQBvn5Z3m81rJQGgMg2KVp2xQiqNXCB8nLM5agNZqpWo5AUrRCOBt6LGK3ad0lfuGV2bglXP9icOx6Hs4zf18XO_96WPyY1xiDu7m8pAdjqOVKaDdZRu2GWwfaL5v8_Y-8P923LF1y-PmWnNo9By4oa0AAGt9N6g7Eyobd1Z0gGMd9pKj6AlkQsOCXPsOwhWeyBtXBMar2ZscdqNRLQ9ZBo7_m5PT9Ufv51G7g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Maximum likelihood discriminant feature spaces</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Saon, G. ; Padmanabhan, M. ; Gopinath, R. ; Chen, S.</creator><creatorcontrib>Saon, G. ; Padmanabhan, M. ; Gopinath, R. ; Chen, S.</creatorcontrib><description>Linear discriminant analysis (LDA) is known to be inappropriate for the case of classes with unequal sample covariances. There has been an interest in generalizing LDA to heteroscedastic discriminant analysis (HDA) by removing the equal within-class covariance constraint. This paper presents a new approach to HDA by defining an objective function which maximizes the class discrimination in the projected subspace while ignoring the rejected dimensions. Moreover, we investigate the link between discrimination and the likelihood of the projected samples and show that HDA can be viewed as a constrained ML projection for a full covariance Gaussian model, the constraint being given by the maximization of the projected between-class scatter volume. It is shown that, under diagonal covariance Gaussian modeling constraints, applying a diagonalizing linear transformation (MLLT) to the HDA space results in increased classification accuracy even though HDA alone actually degrades the recognition performance. Experiments performed on the Switchboard and Voicemail databases show a 10%-13% relative improvement in the word error rate over standard cepstral processing.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780362932</identifier><identifier>ISBN: 0780362934</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2000.859163</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic scattering ; Cepstral analysis ; Covariance matrix ; Degradation ; Error analysis ; Linear discriminant analysis ; Performance analysis ; Speech recognition ; Voice mail</subject><ispartof>2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), 2000, Vol.2, p.II1129-II1132 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/859163$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/859163$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saon, G.</creatorcontrib><creatorcontrib>Padmanabhan, M.</creatorcontrib><creatorcontrib>Gopinath, R.</creatorcontrib><creatorcontrib>Chen, S.</creatorcontrib><title>Maximum likelihood discriminant feature spaces</title><title>2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)</title><addtitle>ICASSP</addtitle><description>Linear discriminant analysis (LDA) is known to be inappropriate for the case of classes with unequal sample covariances. There has been an interest in generalizing LDA to heteroscedastic discriminant analysis (HDA) by removing the equal within-class covariance constraint. This paper presents a new approach to HDA by defining an objective function which maximizes the class discrimination in the projected subspace while ignoring the rejected dimensions. Moreover, we investigate the link between discrimination and the likelihood of the projected samples and show that HDA can be viewed as a constrained ML projection for a full covariance Gaussian model, the constraint being given by the maximization of the projected between-class scatter volume. It is shown that, under diagonal covariance Gaussian modeling constraints, applying a diagonalizing linear transformation (MLLT) to the HDA space results in increased classification accuracy even though HDA alone actually degrades the recognition performance. Experiments performed on the Switchboard and Voicemail databases show a 10%-13% relative improvement in the word error rate over standard cepstral processing.</description><subject>Acoustic scattering</subject><subject>Cepstral analysis</subject><subject>Covariance matrix</subject><subject>Degradation</subject><subject>Error analysis</subject><subject>Linear discriminant analysis</subject><subject>Performance analysis</subject><subject>Speech recognition</subject><subject>Voice mail</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780362932</isbn><isbn>0780362934</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91KAzEUhIM_4Fr7Ar3aF8h6kuxuci6lqBUqClXwrmSTE4zutmWzBX17AxUG5mKY4RvGFgIqIQBvn5Z3m81rJQGgMg2KVp2xQiqNXCB8nLM5agNZqpWo5AUrRCOBt6LGK3ad0lfuGV2bglXP9icOx6Hs4zf18XO_96WPyY1xiDu7m8pAdjqOVKaDdZRu2GWwfaL5v8_Y-8P923LF1y-PmWnNo9By4oa0AAGt9N6g7Eyobd1Z0gGMd9pKj6AlkQsOCXPsOwhWeyBtXBMar2ZscdqNRLQ9ZBo7_m5PT9Ufv51G7g</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Saon, G.</creator><creator>Padmanabhan, M.</creator><creator>Gopinath, R.</creator><creator>Chen, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Maximum likelihood discriminant feature spaces</title><author>Saon, G. ; Padmanabhan, M. ; Gopinath, R. ; Chen, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-8e7101062dd892b8f4a4bae7f08dc7a2d9072eecfc9e9b8fdb0fa7d0e78c5f5d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Acoustic scattering</topic><topic>Cepstral analysis</topic><topic>Covariance matrix</topic><topic>Degradation</topic><topic>Error analysis</topic><topic>Linear discriminant analysis</topic><topic>Performance analysis</topic><topic>Speech recognition</topic><topic>Voice mail</topic><toplevel>online_resources</toplevel><creatorcontrib>Saon, G.</creatorcontrib><creatorcontrib>Padmanabhan, M.</creatorcontrib><creatorcontrib>Gopinath, R.</creatorcontrib><creatorcontrib>Chen, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saon, G.</au><au>Padmanabhan, M.</au><au>Gopinath, R.</au><au>Chen, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Maximum likelihood discriminant feature spaces</atitle><btitle>2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)</btitle><stitle>ICASSP</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>II1129</spage><epage>II1132 vol.2</epage><pages>II1129-II1132 vol.2</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780362932</isbn><isbn>0780362934</isbn><abstract>Linear discriminant analysis (LDA) is known to be inappropriate for the case of classes with unequal sample covariances. There has been an interest in generalizing LDA to heteroscedastic discriminant analysis (HDA) by removing the equal within-class covariance constraint. This paper presents a new approach to HDA by defining an objective function which maximizes the class discrimination in the projected subspace while ignoring the rejected dimensions. Moreover, we investigate the link between discrimination and the likelihood of the projected samples and show that HDA can be viewed as a constrained ML projection for a full covariance Gaussian model, the constraint being given by the maximization of the projected between-class scatter volume. It is shown that, under diagonal covariance Gaussian modeling constraints, applying a diagonalizing linear transformation (MLLT) to the HDA space results in increased classification accuracy even though HDA alone actually degrades the recognition performance. Experiments performed on the Switchboard and Voicemail databases show a 10%-13% relative improvement in the word error rate over standard cepstral processing.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2000.859163</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), 2000, Vol.2, p.II1129-II1132 vol.2 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_859163 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acoustic scattering Cepstral analysis Covariance matrix Degradation Error analysis Linear discriminant analysis Performance analysis Speech recognition Voice mail |
title | Maximum likelihood discriminant feature spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Maximum%20likelihood%20discriminant%20feature%20spaces&rft.btitle=2000%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing.%20Proceedings%20(Cat.%20No.00CH37100)&rft.au=Saon,%20G.&rft.date=2000&rft.volume=2&rft.spage=II1129&rft.epage=II1132%20vol.2&rft.pages=II1129-II1132%20vol.2&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780362932&rft.isbn_list=0780362934&rft_id=info:doi/10.1109/ICASSP.2000.859163&rft_dat=%3Cieee_6IE%3E859163%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-8e7101062dd892b8f4a4bae7f08dc7a2d9072eecfc9e9b8fdb0fa7d0e78c5f5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=859163&rfr_iscdi=true |