Loading…
Cost of Transport Estimation for Legged Robot Based on Terrain Features Inference from Aerial Scan
The effectiveness of the robot locomotion can be measured using the cost of transport (CoT) which represents the amount of energy that is needed for traversing from one place to another. Terrains excerpt different mechanical properties when crawled by a multi-legged robot, and thus different values...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1750 |
container_issue | |
container_start_page | 1745 |
container_title | |
container_volume | |
creator | Pragr, Milos Cizek, Petr Faigl, Jan |
description | The effectiveness of the robot locomotion can be measured using the cost of transport (CoT) which represents the amount of energy that is needed for traversing from one place to another. Terrains excerpt different mechanical properties when crawled by a multi-legged robot, and thus different values of the CoT. It is therefore desirable to estimate the CoT in advance and plan the robot motion accordingly. However, the CoT might not be known prior the robot deployment, e.g., in extraterrestrial missions; hence, a robot has to learn different terrains as it crawls through the environment incrementally. In this work, we focus on estimating the CoT from visual and geometrical data of the crawled terrain. A thorough analysis of different terrain descriptors within the context of incremental learning is presented to select the best performing approach. We report on the achieved results and experimental verification of the selected approaches with a real hexapod robot crawling over six different terrains. |
doi_str_mv | 10.1109/IROS.2018.8593374 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8593374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8593374</ieee_id><sourcerecordid>8593374</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d97cfdbaaf095a7069f3682bbd9ecbed3c8eba77f07feedd35b660df38f5756c3</originalsourceid><addsrcrecordid>eNotkM9qAjEYxNNCoWJ9gNJLXmDtl435d7SidWFBUHuWZPNFtuhGkvTQt-9CPc0MPxiYIeSVwZwxMO_NfneY18D0XAvDuVo8kJlRmgmupQazgEcyqcdUgZbymcxy_gaAWmqu1WJC3CrmQmOgx2SHfIup0HUu_dWWPg40xERbPJ_R0310sdAPm0c_kiOmZPuBbtCWn4SZNkPAhEOHNKR4pUtMvb3QQ2eHF_IU7CXj7K5T8rVZH1fbqt19NqtlW_VMiVJ5o7rgnbUBjLAKpAlc6to5b7Bz6Hmn0VmlAqiA6D0XTkrwgesglJAdn5K3_94eEU-3NI5Iv6f7K_wPBj9XxA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cost of Transport Estimation for Legged Robot Based on Terrain Features Inference from Aerial Scan</title><source>IEEE Xplore All Conference Series</source><creator>Pragr, Milos ; Cizek, Petr ; Faigl, Jan</creator><creatorcontrib>Pragr, Milos ; Cizek, Petr ; Faigl, Jan</creatorcontrib><description>The effectiveness of the robot locomotion can be measured using the cost of transport (CoT) which represents the amount of energy that is needed for traversing from one place to another. Terrains excerpt different mechanical properties when crawled by a multi-legged robot, and thus different values of the CoT. It is therefore desirable to estimate the CoT in advance and plan the robot motion accordingly. However, the CoT might not be known prior the robot deployment, e.g., in extraterrestrial missions; hence, a robot has to learn different terrains as it crawls through the environment incrementally. In this work, we focus on estimating the CoT from visual and geometrical data of the crawled terrain. A thorough analysis of different terrain descriptors within the context of incremental learning is presented to select the best performing approach. We report on the achieved results and experimental verification of the selected approaches with a real hexapod robot crawling over six different terrains.</description><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781538680940</identifier><identifier>EISBN: 1538680947</identifier><identifier>DOI: 10.1109/IROS.2018.8593374</identifier><language>eng</language><publisher>IEEE</publisher><subject>Estimation ; Feature extraction ; Image color analysis ; Robots ; Three-dimensional displays ; Unmanned aerial vehicles ; Visualization</subject><ispartof>2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, p.1745-1750</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8593374$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8593374$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pragr, Milos</creatorcontrib><creatorcontrib>Cizek, Petr</creatorcontrib><creatorcontrib>Faigl, Jan</creatorcontrib><title>Cost of Transport Estimation for Legged Robot Based on Terrain Features Inference from Aerial Scan</title><title>2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</title><addtitle>IROS</addtitle><description>The effectiveness of the robot locomotion can be measured using the cost of transport (CoT) which represents the amount of energy that is needed for traversing from one place to another. Terrains excerpt different mechanical properties when crawled by a multi-legged robot, and thus different values of the CoT. It is therefore desirable to estimate the CoT in advance and plan the robot motion accordingly. However, the CoT might not be known prior the robot deployment, e.g., in extraterrestrial missions; hence, a robot has to learn different terrains as it crawls through the environment incrementally. In this work, we focus on estimating the CoT from visual and geometrical data of the crawled terrain. A thorough analysis of different terrain descriptors within the context of incremental learning is presented to select the best performing approach. We report on the achieved results and experimental verification of the selected approaches with a real hexapod robot crawling over six different terrains.</description><subject>Estimation</subject><subject>Feature extraction</subject><subject>Image color analysis</subject><subject>Robots</subject><subject>Three-dimensional displays</subject><subject>Unmanned aerial vehicles</subject><subject>Visualization</subject><issn>2153-0866</issn><isbn>9781538680940</isbn><isbn>1538680947</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM9qAjEYxNNCoWJ9gNJLXmDtl435d7SidWFBUHuWZPNFtuhGkvTQt-9CPc0MPxiYIeSVwZwxMO_NfneY18D0XAvDuVo8kJlRmgmupQazgEcyqcdUgZbymcxy_gaAWmqu1WJC3CrmQmOgx2SHfIup0HUu_dWWPg40xERbPJ_R0310sdAPm0c_kiOmZPuBbtCWn4SZNkPAhEOHNKR4pUtMvb3QQ2eHF_IU7CXj7K5T8rVZH1fbqt19NqtlW_VMiVJ5o7rgnbUBjLAKpAlc6to5b7Bz6Hmn0VmlAqiA6D0XTkrwgesglJAdn5K3_94eEU-3NI5Iv6f7K_wPBj9XxA</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Pragr, Milos</creator><creator>Cizek, Petr</creator><creator>Faigl, Jan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201810</creationdate><title>Cost of Transport Estimation for Legged Robot Based on Terrain Features Inference from Aerial Scan</title><author>Pragr, Milos ; Cizek, Petr ; Faigl, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d97cfdbaaf095a7069f3682bbd9ecbed3c8eba77f07feedd35b660df38f5756c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Estimation</topic><topic>Feature extraction</topic><topic>Image color analysis</topic><topic>Robots</topic><topic>Three-dimensional displays</topic><topic>Unmanned aerial vehicles</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Pragr, Milos</creatorcontrib><creatorcontrib>Cizek, Petr</creatorcontrib><creatorcontrib>Faigl, Jan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pragr, Milos</au><au>Cizek, Petr</au><au>Faigl, Jan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cost of Transport Estimation for Legged Robot Based on Terrain Features Inference from Aerial Scan</atitle><btitle>2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</btitle><stitle>IROS</stitle><date>2018-10</date><risdate>2018</risdate><spage>1745</spage><epage>1750</epage><pages>1745-1750</pages><eissn>2153-0866</eissn><eisbn>9781538680940</eisbn><eisbn>1538680947</eisbn><abstract>The effectiveness of the robot locomotion can be measured using the cost of transport (CoT) which represents the amount of energy that is needed for traversing from one place to another. Terrains excerpt different mechanical properties when crawled by a multi-legged robot, and thus different values of the CoT. It is therefore desirable to estimate the CoT in advance and plan the robot motion accordingly. However, the CoT might not be known prior the robot deployment, e.g., in extraterrestrial missions; hence, a robot has to learn different terrains as it crawls through the environment incrementally. In this work, we focus on estimating the CoT from visual and geometrical data of the crawled terrain. A thorough analysis of different terrain descriptors within the context of incremental learning is presented to select the best performing approach. We report on the achieved results and experimental verification of the selected approaches with a real hexapod robot crawling over six different terrains.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2018.8593374</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-0866 |
ispartof | 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, p.1745-1750 |
issn | 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_8593374 |
source | IEEE Xplore All Conference Series |
subjects | Estimation Feature extraction Image color analysis Robots Three-dimensional displays Unmanned aerial vehicles Visualization |
title | Cost of Transport Estimation for Legged Robot Based on Terrain Features Inference from Aerial Scan |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cost%20of%20Transport%20Estimation%20for%20Legged%20Robot%20Based%20on%20Terrain%20Features%20Inference%20from%20Aerial%20Scan&rft.btitle=2018%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems%20(IROS)&rft.au=Pragr,%20Milos&rft.date=2018-10&rft.spage=1745&rft.epage=1750&rft.pages=1745-1750&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS.2018.8593374&rft.eisbn=9781538680940&rft.eisbn_list=1538680947&rft_dat=%3Cieee_CHZPO%3E8593374%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-d97cfdbaaf095a7069f3682bbd9ecbed3c8eba77f07feedd35b660df38f5756c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8593374&rfr_iscdi=true |