Loading…
CINet: A Learning Based Approach to Incremental Context Modeling in Robots
There have been several attempts at modeling context in robots. However, either these attempts assume a fixed number of contexts or use a rule-based approach to determine when to increment the number of contexts. In this paper, we pose the task of when to increment as a learning problem, which we so...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4646 |
container_issue | |
container_start_page | 4641 |
container_title | |
container_volume | |
creator | Irmak Dogan, Fethiye Bozcan, Ilker Celik, Mehmet Kalkan, Sinan |
description | There have been several attempts at modeling context in robots. However, either these attempts assume a fixed number of contexts or use a rule-based approach to determine when to increment the number of contexts. In this paper, we pose the task of when to increment as a learning problem, which we solve using a Recurrent Neural Network. We show that the network successfully (with 98% testing accuracy) learns to predict when to increment, and demonstrate, in a scene modeling problem (where the correct number of contexts is not known), that the robot increments the number of contexts in an expected manner (i.e., the entropy of the system is reduced). We also present how the incremental model can be used for various scene reasoning tasks. |
doi_str_mv | 10.1109/IROS.2018.8593633 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8593633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8593633</ieee_id><sourcerecordid>8593633</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-5c41c8c11623cfc4e4d7ca463558e9f465967247db53a959bbb69848ab837ef83</originalsourceid><addsrcrecordid>eNotj81KxDAURqMgOIx9AHGTF2jNf27c1aJjpTow6npI01utdNrSZqFvr-KsPg4cDnyEXHKWcc7cdbnbvmSCcchAO2mkPCGJs8C1BAPMKXZKVuKXUgbGnJNkWT4ZY8KABKtW5LEonzHe0JxW6OehG97prV-wofk0zaMPHzSOtBzCjAccou9pMQ4RvyJ9Ghvs__RuoLuxHuNyQc5a3y-YHHdN3u7vXouHtNpuyiKv0k4oHlMdFA8QODdChjYoVI0NXhmpNaBrldHOWKFsU2vpnXZ1XRsHCnwN0mILck2u_rsdIu6nuTv4-Xt_fC9_ABUATG4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>CINet: A Learning Based Approach to Incremental Context Modeling in Robots</title><source>IEEE Xplore All Conference Series</source><creator>Irmak Dogan, Fethiye ; Bozcan, Ilker ; Celik, Mehmet ; Kalkan, Sinan</creator><creatorcontrib>Irmak Dogan, Fethiye ; Bozcan, Ilker ; Celik, Mehmet ; Kalkan, Sinan</creatorcontrib><description>There have been several attempts at modeling context in robots. However, either these attempts assume a fixed number of contexts or use a rule-based approach to determine when to increment the number of contexts. In this paper, we pose the task of when to increment as a learning problem, which we solve using a Recurrent Neural Network. We show that the network successfully (with 98% testing accuracy) learns to predict when to increment, and demonstrate, in a scene modeling problem (where the correct number of contexts is not known), that the robot increments the number of contexts in an expected manner (i.e., the entropy of the system is reduced). We also present how the incremental model can be used for various scene reasoning tasks.</description><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781538680940</identifier><identifier>EISBN: 1538680947</identifier><identifier>DOI: 10.1109/IROS.2018.8593633</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Context modeling ; Recurrent neural networks ; Resource management ; Robots ; Testing ; Training</subject><ispartof>2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, p.4641-4646</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8593633$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8593633$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Irmak Dogan, Fethiye</creatorcontrib><creatorcontrib>Bozcan, Ilker</creatorcontrib><creatorcontrib>Celik, Mehmet</creatorcontrib><creatorcontrib>Kalkan, Sinan</creatorcontrib><title>CINet: A Learning Based Approach to Incremental Context Modeling in Robots</title><title>2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</title><addtitle>IROS</addtitle><description>There have been several attempts at modeling context in robots. However, either these attempts assume a fixed number of contexts or use a rule-based approach to determine when to increment the number of contexts. In this paper, we pose the task of when to increment as a learning problem, which we solve using a Recurrent Neural Network. We show that the network successfully (with 98% testing accuracy) learns to predict when to increment, and demonstrate, in a scene modeling problem (where the correct number of contexts is not known), that the robot increments the number of contexts in an expected manner (i.e., the entropy of the system is reduced). We also present how the incremental model can be used for various scene reasoning tasks.</description><subject>Computational modeling</subject><subject>Context modeling</subject><subject>Recurrent neural networks</subject><subject>Resource management</subject><subject>Robots</subject><subject>Testing</subject><subject>Training</subject><issn>2153-0866</issn><isbn>9781538680940</isbn><isbn>1538680947</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KxDAURqMgOIx9AHGTF2jNf27c1aJjpTow6npI01utdNrSZqFvr-KsPg4cDnyEXHKWcc7cdbnbvmSCcchAO2mkPCGJs8C1BAPMKXZKVuKXUgbGnJNkWT4ZY8KABKtW5LEonzHe0JxW6OehG97prV-wofk0zaMPHzSOtBzCjAccou9pMQ4RvyJ9Ghvs__RuoLuxHuNyQc5a3y-YHHdN3u7vXouHtNpuyiKv0k4oHlMdFA8QODdChjYoVI0NXhmpNaBrldHOWKFsU2vpnXZ1XRsHCnwN0mILck2u_rsdIu6nuTv4-Xt_fC9_ABUATG4</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Irmak Dogan, Fethiye</creator><creator>Bozcan, Ilker</creator><creator>Celik, Mehmet</creator><creator>Kalkan, Sinan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201810</creationdate><title>CINet: A Learning Based Approach to Incremental Context Modeling in Robots</title><author>Irmak Dogan, Fethiye ; Bozcan, Ilker ; Celik, Mehmet ; Kalkan, Sinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-5c41c8c11623cfc4e4d7ca463558e9f465967247db53a959bbb69848ab837ef83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational modeling</topic><topic>Context modeling</topic><topic>Recurrent neural networks</topic><topic>Resource management</topic><topic>Robots</topic><topic>Testing</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Irmak Dogan, Fethiye</creatorcontrib><creatorcontrib>Bozcan, Ilker</creatorcontrib><creatorcontrib>Celik, Mehmet</creatorcontrib><creatorcontrib>Kalkan, Sinan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Irmak Dogan, Fethiye</au><au>Bozcan, Ilker</au><au>Celik, Mehmet</au><au>Kalkan, Sinan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CINet: A Learning Based Approach to Incremental Context Modeling in Robots</atitle><btitle>2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</btitle><stitle>IROS</stitle><date>2018-10</date><risdate>2018</risdate><spage>4641</spage><epage>4646</epage><pages>4641-4646</pages><eissn>2153-0866</eissn><eisbn>9781538680940</eisbn><eisbn>1538680947</eisbn><abstract>There have been several attempts at modeling context in robots. However, either these attempts assume a fixed number of contexts or use a rule-based approach to determine when to increment the number of contexts. In this paper, we pose the task of when to increment as a learning problem, which we solve using a Recurrent Neural Network. We show that the network successfully (with 98% testing accuracy) learns to predict when to increment, and demonstrate, in a scene modeling problem (where the correct number of contexts is not known), that the robot increments the number of contexts in an expected manner (i.e., the entropy of the system is reduced). We also present how the incremental model can be used for various scene reasoning tasks.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2018.8593633</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-0866 |
ispartof | 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, p.4641-4646 |
issn | 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_8593633 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling Context modeling Recurrent neural networks Resource management Robots Testing Training |
title | CINet: A Learning Based Approach to Incremental Context Modeling in Robots |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CINet:%20A%20Learning%20Based%20Approach%20to%20Incremental%20Context%20Modeling%20in%20Robots&rft.btitle=2018%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems%20(IROS)&rft.au=Irmak%20Dogan,%20Fethiye&rft.date=2018-10&rft.spage=4641&rft.epage=4646&rft.pages=4641-4646&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS.2018.8593633&rft.eisbn=9781538680940&rft.eisbn_list=1538680947&rft_dat=%3Cieee_CHZPO%3E8593633%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i241t-5c41c8c11623cfc4e4d7ca463558e9f465967247db53a959bbb69848ab837ef83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8593633&rfr_iscdi=true |