Loading…

Neural network in fast simulation modelling

This paper proposes a new application of neural networks in telecommunications network simulation. A high-level abstracted analytical model, based on intensive investigation of packet queuing behaviour substantially speeds up the basic simulation. Comparing the results from the model against the beh...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu, E., Cuthbert, L., Schormans, J., Stoneley, G.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 113 vol.6
container_issue
container_start_page 109
container_title
container_volume 6
creator Liu, E.
Cuthbert, L.
Schormans, J.
Stoneley, G.
description This paper proposes a new application of neural networks in telecommunications network simulation. A high-level abstracted analytical model, based on intensive investigation of packet queuing behaviour substantially speeds up the basic simulation. Comparing the results from the model against the behaviour of a testbed leads to some difference between the model results and the experimental validation, an expected result given the level of abstraction. A neural network is applied to learn the relation between the model parameters and the output difference, and neural network prediction is used to 'fine-tune' the model accordingly. Results indicate that the proposed hybrid method (using the neural network to tune the abstracted model) achieves fast simulation and also remains accurate. This approach is particularly useful in the area of large-scale network designing and planning, where concern is more about the overall performance of the network than the detailed structure of a network node.
doi_str_mv 10.1109/IJCNN.2000.859381
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_859381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>859381</ieee_id><sourcerecordid>859381</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-2459b4264ee145087a8e6a827c2eb01f1bef25387302a485b32876e4df24b5f53</originalsourceid><addsrcrecordid>eNotj0tLw0AURgcfYKn5AbrKXhLvvTN3HkspPiolbnRdJvZGRvOQJEX89xbq6lsczoFPqSuEEhHC7fp5VVUlAUDpOWiPJ2qBzL7QAehUZcF5cDYwWAzu7MAg-MKxsxcqm6bPg4eg2RIu1E0l-zG2eS_zzzB-5anPmzjN-ZS6fRvnNPR5N-ykbVP_canOm9hOkv3vUr093L-unorNy-N6dbcpEjqaCzIcakPWiKBh8C56sdGTeyepARuspSHW3mmgaDzXmryzYnYNmZob1kt1fewmEdl-j6mL4-_2-FT_AVjdQ58</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural network in fast simulation modelling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liu, E. ; Cuthbert, L. ; Schormans, J. ; Stoneley, G.</creator><creatorcontrib>Liu, E. ; Cuthbert, L. ; Schormans, J. ; Stoneley, G.</creatorcontrib><description>This paper proposes a new application of neural networks in telecommunications network simulation. A high-level abstracted analytical model, based on intensive investigation of packet queuing behaviour substantially speeds up the basic simulation. Comparing the results from the model against the behaviour of a testbed leads to some difference between the model results and the experimental validation, an expected result given the level of abstraction. A neural network is applied to learn the relation between the model parameters and the output difference, and neural network prediction is used to 'fine-tune' the model accordingly. Results indicate that the proposed hybrid method (using the neural network to tune the abstracted model) achieves fast simulation and also remains accurate. This approach is particularly useful in the area of large-scale network designing and planning, where concern is more about the overall performance of the network than the detailed structure of a network node.</description><identifier>ISSN: 1098-7576</identifier><identifier>ISBN: 9780769506197</identifier><identifier>ISBN: 0769506194</identifier><identifier>EISSN: 1558-3902</identifier><identifier>DOI: 10.1109/IJCNN.2000.859381</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Artificial neural networks ; Discrete event simulation ; Intelligent networks ; Large-scale systems ; Neural networks ; Predictive models ; Telecommunication traffic ; Testing ; Traffic control</subject><ispartof>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 2000, Vol.6, p.109-113 vol.6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/859381$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/859381$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, E.</creatorcontrib><creatorcontrib>Cuthbert, L.</creatorcontrib><creatorcontrib>Schormans, J.</creatorcontrib><creatorcontrib>Stoneley, G.</creatorcontrib><title>Neural network in fast simulation modelling</title><title>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium</title><addtitle>IJCNN</addtitle><description>This paper proposes a new application of neural networks in telecommunications network simulation. A high-level abstracted analytical model, based on intensive investigation of packet queuing behaviour substantially speeds up the basic simulation. Comparing the results from the model against the behaviour of a testbed leads to some difference between the model results and the experimental validation, an expected result given the level of abstraction. A neural network is applied to learn the relation between the model parameters and the output difference, and neural network prediction is used to 'fine-tune' the model accordingly. Results indicate that the proposed hybrid method (using the neural network to tune the abstracted model) achieves fast simulation and also remains accurate. This approach is particularly useful in the area of large-scale network designing and planning, where concern is more about the overall performance of the network than the detailed structure of a network node.</description><subject>Analytical models</subject><subject>Artificial neural networks</subject><subject>Discrete event simulation</subject><subject>Intelligent networks</subject><subject>Large-scale systems</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Telecommunication traffic</subject><subject>Testing</subject><subject>Traffic control</subject><issn>1098-7576</issn><issn>1558-3902</issn><isbn>9780769506197</isbn><isbn>0769506194</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0tLw0AURgcfYKn5AbrKXhLvvTN3HkspPiolbnRdJvZGRvOQJEX89xbq6lsczoFPqSuEEhHC7fp5VVUlAUDpOWiPJ2qBzL7QAehUZcF5cDYwWAzu7MAg-MKxsxcqm6bPg4eg2RIu1E0l-zG2eS_zzzB-5anPmzjN-ZS6fRvnNPR5N-ykbVP_canOm9hOkv3vUr093L-unorNy-N6dbcpEjqaCzIcakPWiKBh8C56sdGTeyepARuspSHW3mmgaDzXmryzYnYNmZob1kt1fewmEdl-j6mL4-_2-FT_AVjdQ58</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Liu, E.</creator><creator>Cuthbert, L.</creator><creator>Schormans, J.</creator><creator>Stoneley, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Neural network in fast simulation modelling</title><author>Liu, E. ; Cuthbert, L. ; Schormans, J. ; Stoneley, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-2459b4264ee145087a8e6a827c2eb01f1bef25387302a485b32876e4df24b5f53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Analytical models</topic><topic>Artificial neural networks</topic><topic>Discrete event simulation</topic><topic>Intelligent networks</topic><topic>Large-scale systems</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Telecommunication traffic</topic><topic>Testing</topic><topic>Traffic control</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, E.</creatorcontrib><creatorcontrib>Cuthbert, L.</creatorcontrib><creatorcontrib>Schormans, J.</creatorcontrib><creatorcontrib>Stoneley, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Explore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, E.</au><au>Cuthbert, L.</au><au>Schormans, J.</au><au>Stoneley, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural network in fast simulation modelling</atitle><btitle>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium</btitle><stitle>IJCNN</stitle><date>2000</date><risdate>2000</risdate><volume>6</volume><spage>109</spage><epage>113 vol.6</epage><pages>109-113 vol.6</pages><issn>1098-7576</issn><eissn>1558-3902</eissn><isbn>9780769506197</isbn><isbn>0769506194</isbn><abstract>This paper proposes a new application of neural networks in telecommunications network simulation. A high-level abstracted analytical model, based on intensive investigation of packet queuing behaviour substantially speeds up the basic simulation. Comparing the results from the model against the behaviour of a testbed leads to some difference between the model results and the experimental validation, an expected result given the level of abstraction. A neural network is applied to learn the relation between the model parameters and the output difference, and neural network prediction is used to 'fine-tune' the model accordingly. Results indicate that the proposed hybrid method (using the neural network to tune the abstracted model) achieves fast simulation and also remains accurate. This approach is particularly useful in the area of large-scale network designing and planning, where concern is more about the overall performance of the network than the detailed structure of a network node.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2000.859381</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7576
ispartof Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 2000, Vol.6, p.109-113 vol.6
issn 1098-7576
1558-3902
language eng
recordid cdi_ieee_primary_859381
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Artificial neural networks
Discrete event simulation
Intelligent networks
Large-scale systems
Neural networks
Predictive models
Telecommunication traffic
Testing
Traffic control
title Neural network in fast simulation modelling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20network%20in%20fast%20simulation%20modelling&rft.btitle=Proceedings%20of%20the%20IEEE-INNS-ENNS%20International%20Joint%20Conference%20on%20Neural%20Networks.%20IJCNN%202000.%20Neural%20Computing:%20New%20Challenges%20and%20Perspectives%20for%20the%20New%20Millennium&rft.au=Liu,%20E.&rft.date=2000&rft.volume=6&rft.spage=109&rft.epage=113%20vol.6&rft.pages=109-113%20vol.6&rft.issn=1098-7576&rft.eissn=1558-3902&rft.isbn=9780769506197&rft.isbn_list=0769506194&rft_id=info:doi/10.1109/IJCNN.2000.859381&rft_dat=%3Cieee_6IE%3E859381%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-2459b4264ee145087a8e6a827c2eb01f1bef25387302a485b32876e4df24b5f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=859381&rfr_iscdi=true