Loading…
Neural network in fast simulation modelling
This paper proposes a new application of neural networks in telecommunications network simulation. A high-level abstracted analytical model, based on intensive investigation of packet queuing behaviour substantially speeds up the basic simulation. Comparing the results from the model against the beh...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 113 vol.6 |
container_issue | |
container_start_page | 109 |
container_title | |
container_volume | 6 |
creator | Liu, E. Cuthbert, L. Schormans, J. Stoneley, G. |
description | This paper proposes a new application of neural networks in telecommunications network simulation. A high-level abstracted analytical model, based on intensive investigation of packet queuing behaviour substantially speeds up the basic simulation. Comparing the results from the model against the behaviour of a testbed leads to some difference between the model results and the experimental validation, an expected result given the level of abstraction. A neural network is applied to learn the relation between the model parameters and the output difference, and neural network prediction is used to 'fine-tune' the model accordingly. Results indicate that the proposed hybrid method (using the neural network to tune the abstracted model) achieves fast simulation and also remains accurate. This approach is particularly useful in the area of large-scale network designing and planning, where concern is more about the overall performance of the network than the detailed structure of a network node. |
doi_str_mv | 10.1109/IJCNN.2000.859381 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_859381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>859381</ieee_id><sourcerecordid>859381</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-2459b4264ee145087a8e6a827c2eb01f1bef25387302a485b32876e4df24b5f53</originalsourceid><addsrcrecordid>eNotj0tLw0AURgcfYKn5AbrKXhLvvTN3HkspPiolbnRdJvZGRvOQJEX89xbq6lsczoFPqSuEEhHC7fp5VVUlAUDpOWiPJ2qBzL7QAehUZcF5cDYwWAzu7MAg-MKxsxcqm6bPg4eg2RIu1E0l-zG2eS_zzzB-5anPmzjN-ZS6fRvnNPR5N-ykbVP_canOm9hOkv3vUr093L-unorNy-N6dbcpEjqaCzIcakPWiKBh8C56sdGTeyepARuspSHW3mmgaDzXmryzYnYNmZob1kt1fewmEdl-j6mL4-_2-FT_AVjdQ58</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural network in fast simulation modelling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liu, E. ; Cuthbert, L. ; Schormans, J. ; Stoneley, G.</creator><creatorcontrib>Liu, E. ; Cuthbert, L. ; Schormans, J. ; Stoneley, G.</creatorcontrib><description>This paper proposes a new application of neural networks in telecommunications network simulation. A high-level abstracted analytical model, based on intensive investigation of packet queuing behaviour substantially speeds up the basic simulation. Comparing the results from the model against the behaviour of a testbed leads to some difference between the model results and the experimental validation, an expected result given the level of abstraction. A neural network is applied to learn the relation between the model parameters and the output difference, and neural network prediction is used to 'fine-tune' the model accordingly. Results indicate that the proposed hybrid method (using the neural network to tune the abstracted model) achieves fast simulation and also remains accurate. This approach is particularly useful in the area of large-scale network designing and planning, where concern is more about the overall performance of the network than the detailed structure of a network node.</description><identifier>ISSN: 1098-7576</identifier><identifier>ISBN: 9780769506197</identifier><identifier>ISBN: 0769506194</identifier><identifier>EISSN: 1558-3902</identifier><identifier>DOI: 10.1109/IJCNN.2000.859381</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Artificial neural networks ; Discrete event simulation ; Intelligent networks ; Large-scale systems ; Neural networks ; Predictive models ; Telecommunication traffic ; Testing ; Traffic control</subject><ispartof>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 2000, Vol.6, p.109-113 vol.6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/859381$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/859381$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, E.</creatorcontrib><creatorcontrib>Cuthbert, L.</creatorcontrib><creatorcontrib>Schormans, J.</creatorcontrib><creatorcontrib>Stoneley, G.</creatorcontrib><title>Neural network in fast simulation modelling</title><title>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium</title><addtitle>IJCNN</addtitle><description>This paper proposes a new application of neural networks in telecommunications network simulation. A high-level abstracted analytical model, based on intensive investigation of packet queuing behaviour substantially speeds up the basic simulation. Comparing the results from the model against the behaviour of a testbed leads to some difference between the model results and the experimental validation, an expected result given the level of abstraction. A neural network is applied to learn the relation between the model parameters and the output difference, and neural network prediction is used to 'fine-tune' the model accordingly. Results indicate that the proposed hybrid method (using the neural network to tune the abstracted model) achieves fast simulation and also remains accurate. This approach is particularly useful in the area of large-scale network designing and planning, where concern is more about the overall performance of the network than the detailed structure of a network node.</description><subject>Analytical models</subject><subject>Artificial neural networks</subject><subject>Discrete event simulation</subject><subject>Intelligent networks</subject><subject>Large-scale systems</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Telecommunication traffic</subject><subject>Testing</subject><subject>Traffic control</subject><issn>1098-7576</issn><issn>1558-3902</issn><isbn>9780769506197</isbn><isbn>0769506194</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0tLw0AURgcfYKn5AbrKXhLvvTN3HkspPiolbnRdJvZGRvOQJEX89xbq6lsczoFPqSuEEhHC7fp5VVUlAUDpOWiPJ2qBzL7QAehUZcF5cDYwWAzu7MAg-MKxsxcqm6bPg4eg2RIu1E0l-zG2eS_zzzB-5anPmzjN-ZS6fRvnNPR5N-ykbVP_canOm9hOkv3vUr093L-unorNy-N6dbcpEjqaCzIcakPWiKBh8C56sdGTeyepARuspSHW3mmgaDzXmryzYnYNmZob1kt1fewmEdl-j6mL4-_2-FT_AVjdQ58</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Liu, E.</creator><creator>Cuthbert, L.</creator><creator>Schormans, J.</creator><creator>Stoneley, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Neural network in fast simulation modelling</title><author>Liu, E. ; Cuthbert, L. ; Schormans, J. ; Stoneley, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-2459b4264ee145087a8e6a827c2eb01f1bef25387302a485b32876e4df24b5f53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Analytical models</topic><topic>Artificial neural networks</topic><topic>Discrete event simulation</topic><topic>Intelligent networks</topic><topic>Large-scale systems</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Telecommunication traffic</topic><topic>Testing</topic><topic>Traffic control</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, E.</creatorcontrib><creatorcontrib>Cuthbert, L.</creatorcontrib><creatorcontrib>Schormans, J.</creatorcontrib><creatorcontrib>Stoneley, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Explore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, E.</au><au>Cuthbert, L.</au><au>Schormans, J.</au><au>Stoneley, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural network in fast simulation modelling</atitle><btitle>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium</btitle><stitle>IJCNN</stitle><date>2000</date><risdate>2000</risdate><volume>6</volume><spage>109</spage><epage>113 vol.6</epage><pages>109-113 vol.6</pages><issn>1098-7576</issn><eissn>1558-3902</eissn><isbn>9780769506197</isbn><isbn>0769506194</isbn><abstract>This paper proposes a new application of neural networks in telecommunications network simulation. A high-level abstracted analytical model, based on intensive investigation of packet queuing behaviour substantially speeds up the basic simulation. Comparing the results from the model against the behaviour of a testbed leads to some difference between the model results and the experimental validation, an expected result given the level of abstraction. A neural network is applied to learn the relation between the model parameters and the output difference, and neural network prediction is used to 'fine-tune' the model accordingly. Results indicate that the proposed hybrid method (using the neural network to tune the abstracted model) achieves fast simulation and also remains accurate. This approach is particularly useful in the area of large-scale network designing and planning, where concern is more about the overall performance of the network than the detailed structure of a network node.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2000.859381</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1098-7576 |
ispartof | Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 2000, Vol.6, p.109-113 vol.6 |
issn | 1098-7576 1558-3902 |
language | eng |
recordid | cdi_ieee_primary_859381 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Artificial neural networks Discrete event simulation Intelligent networks Large-scale systems Neural networks Predictive models Telecommunication traffic Testing Traffic control |
title | Neural network in fast simulation modelling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20network%20in%20fast%20simulation%20modelling&rft.btitle=Proceedings%20of%20the%20IEEE-INNS-ENNS%20International%20Joint%20Conference%20on%20Neural%20Networks.%20IJCNN%202000.%20Neural%20Computing:%20New%20Challenges%20and%20Perspectives%20for%20the%20New%20Millennium&rft.au=Liu,%20E.&rft.date=2000&rft.volume=6&rft.spage=109&rft.epage=113%20vol.6&rft.pages=109-113%20vol.6&rft.issn=1098-7576&rft.eissn=1558-3902&rft.isbn=9780769506197&rft.isbn_list=0769506194&rft_id=info:doi/10.1109/IJCNN.2000.859381&rft_dat=%3Cieee_6IE%3E859381%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-2459b4264ee145087a8e6a827c2eb01f1bef25387302a485b32876e4df24b5f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=859381&rfr_iscdi=true |