Loading…
Reach-Avoid Problems via Sum-or-Squares Optimization and Dynamic Programming
Reach-avoid problems involve driving a system to a set of desirable configurations while keeping it away from undesirable ones. Providing mathematical guarantees for such scenarios is challenging but have numerous potential practical applications. Due to the challenges, analysis of reach-avoid probl...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4332 |
container_issue | |
container_start_page | 4325 |
container_title | |
container_volume | |
creator | Landry, Benoit Chen, Mo Hemley, Scott Pavone, Marco |
description | Reach-avoid problems involve driving a system to a set of desirable configurations while keeping it away from undesirable ones. Providing mathematical guarantees for such scenarios is challenging but have numerous potential practical applications. Due to the challenges, analysis of reach-avoid problems involves making trade-offs between generality of system dynamics, generality of problem setups, optimality of solutions, and computational complexity. In this paper, we combine sum-of-squares optimization and dynamic programming to address the reach-avoid problem, and provide a conservative solution that maintains reaching and avoidance guarantees. Our method is applicable to polynomial system dynamics and to general problem setups, and is more computationally scalable than previous related methods. Through a numerical example involving two single integrators, we validate our proposed theory and compare our method to Hamilton-Jacobi reachability. Having validated our theory, we demonstrate the computational scalability of our method by computing the reach-avoid set of a system involving two kinematic cars. |
doi_str_mv | 10.1109/IROS.2018.8594078 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8594078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8594078</ieee_id><sourcerecordid>8594078</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-10f03c81653d3b06c3dcc7fd5a1aa6d1d12535796c37dfec710610f53ec15f563</originalsourceid><addsrcrecordid>eNotj9tKw0AYhFdBsNQ8gHizL7Dx_7PdQy5LPbQQiDR6Xba7m7rSTWqSFurTG7FXw8zwDQwh9wgpIuSPq3VZpRmgTrXIZ6D0FUlypVFwLTWMyTWZZKNjoKW8JUnffwFAJjXXajYhxdob-8nmpzY4-ta1272PPT0FQ6tjZG3Hqu-j6XxPy8MQYvgxQ2gbahpHn86NicH-QbvOxBia3R25qc2-98lFp-Tj5fl9sWRF-bpazAsWUImBIdTArUYpuONbkJY7a1XthEFjpEOHmeBC5WOhXO2tQpAjI7i3KGoh-ZQ8_O8G7_3m0IVouvPm8p__AqurTng</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reach-Avoid Problems via Sum-or-Squares Optimization and Dynamic Programming</title><source>IEEE Xplore All Conference Series</source><creator>Landry, Benoit ; Chen, Mo ; Hemley, Scott ; Pavone, Marco</creator><creatorcontrib>Landry, Benoit ; Chen, Mo ; Hemley, Scott ; Pavone, Marco</creatorcontrib><description>Reach-avoid problems involve driving a system to a set of desirable configurations while keeping it away from undesirable ones. Providing mathematical guarantees for such scenarios is challenging but have numerous potential practical applications. Due to the challenges, analysis of reach-avoid problems involves making trade-offs between generality of system dynamics, generality of problem setups, optimality of solutions, and computational complexity. In this paper, we combine sum-of-squares optimization and dynamic programming to address the reach-avoid problem, and provide a conservative solution that maintains reaching and avoidance guarantees. Our method is applicable to polynomial system dynamics and to general problem setups, and is more computationally scalable than previous related methods. Through a numerical example involving two single integrators, we validate our proposed theory and compare our method to Hamilton-Jacobi reachability. Having validated our theory, we demonstrate the computational scalability of our method by computing the reach-avoid set of a system involving two kinematic cars.</description><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781538680940</identifier><identifier>EISBN: 1538680947</identifier><identifier>DOI: 10.1109/IROS.2018.8594078</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automobiles ; Dynamic programming ; Games ; Optimization ; Planning ; System dynamics ; Vehicle dynamics</subject><ispartof>2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, p.4325-4332</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8594078$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8594078$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Landry, Benoit</creatorcontrib><creatorcontrib>Chen, Mo</creatorcontrib><creatorcontrib>Hemley, Scott</creatorcontrib><creatorcontrib>Pavone, Marco</creatorcontrib><title>Reach-Avoid Problems via Sum-or-Squares Optimization and Dynamic Programming</title><title>2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</title><addtitle>IROS</addtitle><description>Reach-avoid problems involve driving a system to a set of desirable configurations while keeping it away from undesirable ones. Providing mathematical guarantees for such scenarios is challenging but have numerous potential practical applications. Due to the challenges, analysis of reach-avoid problems involves making trade-offs between generality of system dynamics, generality of problem setups, optimality of solutions, and computational complexity. In this paper, we combine sum-of-squares optimization and dynamic programming to address the reach-avoid problem, and provide a conservative solution that maintains reaching and avoidance guarantees. Our method is applicable to polynomial system dynamics and to general problem setups, and is more computationally scalable than previous related methods. Through a numerical example involving two single integrators, we validate our proposed theory and compare our method to Hamilton-Jacobi reachability. Having validated our theory, we demonstrate the computational scalability of our method by computing the reach-avoid set of a system involving two kinematic cars.</description><subject>Automobiles</subject><subject>Dynamic programming</subject><subject>Games</subject><subject>Optimization</subject><subject>Planning</subject><subject>System dynamics</subject><subject>Vehicle dynamics</subject><issn>2153-0866</issn><isbn>9781538680940</isbn><isbn>1538680947</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9tKw0AYhFdBsNQ8gHizL7Dx_7PdQy5LPbQQiDR6Xba7m7rSTWqSFurTG7FXw8zwDQwh9wgpIuSPq3VZpRmgTrXIZ6D0FUlypVFwLTWMyTWZZKNjoKW8JUnffwFAJjXXajYhxdob-8nmpzY4-ta1272PPT0FQ6tjZG3Hqu-j6XxPy8MQYvgxQ2gbahpHn86NicH-QbvOxBia3R25qc2-98lFp-Tj5fl9sWRF-bpazAsWUImBIdTArUYpuONbkJY7a1XthEFjpEOHmeBC5WOhXO2tQpAjI7i3KGoh-ZQ8_O8G7_3m0IVouvPm8p__AqurTng</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Landry, Benoit</creator><creator>Chen, Mo</creator><creator>Hemley, Scott</creator><creator>Pavone, Marco</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201810</creationdate><title>Reach-Avoid Problems via Sum-or-Squares Optimization and Dynamic Programming</title><author>Landry, Benoit ; Chen, Mo ; Hemley, Scott ; Pavone, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-10f03c81653d3b06c3dcc7fd5a1aa6d1d12535796c37dfec710610f53ec15f563</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automobiles</topic><topic>Dynamic programming</topic><topic>Games</topic><topic>Optimization</topic><topic>Planning</topic><topic>System dynamics</topic><topic>Vehicle dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Landry, Benoit</creatorcontrib><creatorcontrib>Chen, Mo</creatorcontrib><creatorcontrib>Hemley, Scott</creatorcontrib><creatorcontrib>Pavone, Marco</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Landry, Benoit</au><au>Chen, Mo</au><au>Hemley, Scott</au><au>Pavone, Marco</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reach-Avoid Problems via Sum-or-Squares Optimization and Dynamic Programming</atitle><btitle>2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</btitle><stitle>IROS</stitle><date>2018-10</date><risdate>2018</risdate><spage>4325</spage><epage>4332</epage><pages>4325-4332</pages><eissn>2153-0866</eissn><eisbn>9781538680940</eisbn><eisbn>1538680947</eisbn><abstract>Reach-avoid problems involve driving a system to a set of desirable configurations while keeping it away from undesirable ones. Providing mathematical guarantees for such scenarios is challenging but have numerous potential practical applications. Due to the challenges, analysis of reach-avoid problems involves making trade-offs between generality of system dynamics, generality of problem setups, optimality of solutions, and computational complexity. In this paper, we combine sum-of-squares optimization and dynamic programming to address the reach-avoid problem, and provide a conservative solution that maintains reaching and avoidance guarantees. Our method is applicable to polynomial system dynamics and to general problem setups, and is more computationally scalable than previous related methods. Through a numerical example involving two single integrators, we validate our proposed theory and compare our method to Hamilton-Jacobi reachability. Having validated our theory, we demonstrate the computational scalability of our method by computing the reach-avoid set of a system involving two kinematic cars.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2018.8594078</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-0866 |
ispartof | 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, p.4325-4332 |
issn | 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_8594078 |
source | IEEE Xplore All Conference Series |
subjects | Automobiles Dynamic programming Games Optimization Planning System dynamics Vehicle dynamics |
title | Reach-Avoid Problems via Sum-or-Squares Optimization and Dynamic Programming |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T00%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reach-Avoid%20Problems%20via%20Sum-or-Squares%20Optimization%20and%20Dynamic%20Programming&rft.btitle=2018%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems%20(IROS)&rft.au=Landry,%20Benoit&rft.date=2018-10&rft.spage=4325&rft.epage=4332&rft.pages=4325-4332&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS.2018.8594078&rft.eisbn=9781538680940&rft.eisbn_list=1538680947&rft_dat=%3Cieee_CHZPO%3E8594078%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-10f03c81653d3b06c3dcc7fd5a1aa6d1d12535796c37dfec710610f53ec15f563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8594078&rfr_iscdi=true |