Loading…

Reach-Avoid Problems via Sum-or-Squares Optimization and Dynamic Programming

Reach-avoid problems involve driving a system to a set of desirable configurations while keeping it away from undesirable ones. Providing mathematical guarantees for such scenarios is challenging but have numerous potential practical applications. Due to the challenges, analysis of reach-avoid probl...

Full description

Saved in:
Bibliographic Details
Main Authors: Landry, Benoit, Chen, Mo, Hemley, Scott, Pavone, Marco
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4332
container_issue
container_start_page 4325
container_title
container_volume
creator Landry, Benoit
Chen, Mo
Hemley, Scott
Pavone, Marco
description Reach-avoid problems involve driving a system to a set of desirable configurations while keeping it away from undesirable ones. Providing mathematical guarantees for such scenarios is challenging but have numerous potential practical applications. Due to the challenges, analysis of reach-avoid problems involves making trade-offs between generality of system dynamics, generality of problem setups, optimality of solutions, and computational complexity. In this paper, we combine sum-of-squares optimization and dynamic programming to address the reach-avoid problem, and provide a conservative solution that maintains reaching and avoidance guarantees. Our method is applicable to polynomial system dynamics and to general problem setups, and is more computationally scalable than previous related methods. Through a numerical example involving two single integrators, we validate our proposed theory and compare our method to Hamilton-Jacobi reachability. Having validated our theory, we demonstrate the computational scalability of our method by computing the reach-avoid set of a system involving two kinematic cars.
doi_str_mv 10.1109/IROS.2018.8594078
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8594078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8594078</ieee_id><sourcerecordid>8594078</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-10f03c81653d3b06c3dcc7fd5a1aa6d1d12535796c37dfec710610f53ec15f563</originalsourceid><addsrcrecordid>eNotj9tKw0AYhFdBsNQ8gHizL7Dx_7PdQy5LPbQQiDR6Xba7m7rSTWqSFurTG7FXw8zwDQwh9wgpIuSPq3VZpRmgTrXIZ6D0FUlypVFwLTWMyTWZZKNjoKW8JUnffwFAJjXXajYhxdob-8nmpzY4-ta1272PPT0FQ6tjZG3Hqu-j6XxPy8MQYvgxQ2gbahpHn86NicH-QbvOxBia3R25qc2-98lFp-Tj5fl9sWRF-bpazAsWUImBIdTArUYpuONbkJY7a1XthEFjpEOHmeBC5WOhXO2tQpAjI7i3KGoh-ZQ8_O8G7_3m0IVouvPm8p__AqurTng</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reach-Avoid Problems via Sum-or-Squares Optimization and Dynamic Programming</title><source>IEEE Xplore All Conference Series</source><creator>Landry, Benoit ; Chen, Mo ; Hemley, Scott ; Pavone, Marco</creator><creatorcontrib>Landry, Benoit ; Chen, Mo ; Hemley, Scott ; Pavone, Marco</creatorcontrib><description>Reach-avoid problems involve driving a system to a set of desirable configurations while keeping it away from undesirable ones. Providing mathematical guarantees for such scenarios is challenging but have numerous potential practical applications. Due to the challenges, analysis of reach-avoid problems involves making trade-offs between generality of system dynamics, generality of problem setups, optimality of solutions, and computational complexity. In this paper, we combine sum-of-squares optimization and dynamic programming to address the reach-avoid problem, and provide a conservative solution that maintains reaching and avoidance guarantees. Our method is applicable to polynomial system dynamics and to general problem setups, and is more computationally scalable than previous related methods. Through a numerical example involving two single integrators, we validate our proposed theory and compare our method to Hamilton-Jacobi reachability. Having validated our theory, we demonstrate the computational scalability of our method by computing the reach-avoid set of a system involving two kinematic cars.</description><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781538680940</identifier><identifier>EISBN: 1538680947</identifier><identifier>DOI: 10.1109/IROS.2018.8594078</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automobiles ; Dynamic programming ; Games ; Optimization ; Planning ; System dynamics ; Vehicle dynamics</subject><ispartof>2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, p.4325-4332</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8594078$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8594078$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Landry, Benoit</creatorcontrib><creatorcontrib>Chen, Mo</creatorcontrib><creatorcontrib>Hemley, Scott</creatorcontrib><creatorcontrib>Pavone, Marco</creatorcontrib><title>Reach-Avoid Problems via Sum-or-Squares Optimization and Dynamic Programming</title><title>2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</title><addtitle>IROS</addtitle><description>Reach-avoid problems involve driving a system to a set of desirable configurations while keeping it away from undesirable ones. Providing mathematical guarantees for such scenarios is challenging but have numerous potential practical applications. Due to the challenges, analysis of reach-avoid problems involves making trade-offs between generality of system dynamics, generality of problem setups, optimality of solutions, and computational complexity. In this paper, we combine sum-of-squares optimization and dynamic programming to address the reach-avoid problem, and provide a conservative solution that maintains reaching and avoidance guarantees. Our method is applicable to polynomial system dynamics and to general problem setups, and is more computationally scalable than previous related methods. Through a numerical example involving two single integrators, we validate our proposed theory and compare our method to Hamilton-Jacobi reachability. Having validated our theory, we demonstrate the computational scalability of our method by computing the reach-avoid set of a system involving two kinematic cars.</description><subject>Automobiles</subject><subject>Dynamic programming</subject><subject>Games</subject><subject>Optimization</subject><subject>Planning</subject><subject>System dynamics</subject><subject>Vehicle dynamics</subject><issn>2153-0866</issn><isbn>9781538680940</isbn><isbn>1538680947</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9tKw0AYhFdBsNQ8gHizL7Dx_7PdQy5LPbQQiDR6Xba7m7rSTWqSFurTG7FXw8zwDQwh9wgpIuSPq3VZpRmgTrXIZ6D0FUlypVFwLTWMyTWZZKNjoKW8JUnffwFAJjXXajYhxdob-8nmpzY4-ta1272PPT0FQ6tjZG3Hqu-j6XxPy8MQYvgxQ2gbahpHn86NicH-QbvOxBia3R25qc2-98lFp-Tj5fl9sWRF-bpazAsWUImBIdTArUYpuONbkJY7a1XthEFjpEOHmeBC5WOhXO2tQpAjI7i3KGoh-ZQ8_O8G7_3m0IVouvPm8p__AqurTng</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Landry, Benoit</creator><creator>Chen, Mo</creator><creator>Hemley, Scott</creator><creator>Pavone, Marco</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201810</creationdate><title>Reach-Avoid Problems via Sum-or-Squares Optimization and Dynamic Programming</title><author>Landry, Benoit ; Chen, Mo ; Hemley, Scott ; Pavone, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-10f03c81653d3b06c3dcc7fd5a1aa6d1d12535796c37dfec710610f53ec15f563</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automobiles</topic><topic>Dynamic programming</topic><topic>Games</topic><topic>Optimization</topic><topic>Planning</topic><topic>System dynamics</topic><topic>Vehicle dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Landry, Benoit</creatorcontrib><creatorcontrib>Chen, Mo</creatorcontrib><creatorcontrib>Hemley, Scott</creatorcontrib><creatorcontrib>Pavone, Marco</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Landry, Benoit</au><au>Chen, Mo</au><au>Hemley, Scott</au><au>Pavone, Marco</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reach-Avoid Problems via Sum-or-Squares Optimization and Dynamic Programming</atitle><btitle>2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</btitle><stitle>IROS</stitle><date>2018-10</date><risdate>2018</risdate><spage>4325</spage><epage>4332</epage><pages>4325-4332</pages><eissn>2153-0866</eissn><eisbn>9781538680940</eisbn><eisbn>1538680947</eisbn><abstract>Reach-avoid problems involve driving a system to a set of desirable configurations while keeping it away from undesirable ones. Providing mathematical guarantees for such scenarios is challenging but have numerous potential practical applications. Due to the challenges, analysis of reach-avoid problems involves making trade-offs between generality of system dynamics, generality of problem setups, optimality of solutions, and computational complexity. In this paper, we combine sum-of-squares optimization and dynamic programming to address the reach-avoid problem, and provide a conservative solution that maintains reaching and avoidance guarantees. Our method is applicable to polynomial system dynamics and to general problem setups, and is more computationally scalable than previous related methods. Through a numerical example involving two single integrators, we validate our proposed theory and compare our method to Hamilton-Jacobi reachability. Having validated our theory, we demonstrate the computational scalability of our method by computing the reach-avoid set of a system involving two kinematic cars.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2018.8594078</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-0866
ispartof 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, p.4325-4332
issn 2153-0866
language eng
recordid cdi_ieee_primary_8594078
source IEEE Xplore All Conference Series
subjects Automobiles
Dynamic programming
Games
Optimization
Planning
System dynamics
Vehicle dynamics
title Reach-Avoid Problems via Sum-or-Squares Optimization and Dynamic Programming
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T00%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reach-Avoid%20Problems%20via%20Sum-or-Squares%20Optimization%20and%20Dynamic%20Programming&rft.btitle=2018%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems%20(IROS)&rft.au=Landry,%20Benoit&rft.date=2018-10&rft.spage=4325&rft.epage=4332&rft.pages=4325-4332&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS.2018.8594078&rft.eisbn=9781538680940&rft.eisbn_list=1538680947&rft_dat=%3Cieee_CHZPO%3E8594078%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-10f03c81653d3b06c3dcc7fd5a1aa6d1d12535796c37dfec710610f53ec15f563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8594078&rfr_iscdi=true