Loading…

Adaptive Autonomous Grasp Selection via Pairwise Ranking

Autonomous grasp selection for robot pick-and-place applications makes use of either empirical methods leveraging object databases, which generate grasps for specific objects at the initial cost of modeling effort, or analytical methods, which generalize to novel objects but fail on object subsets t...

Full description

Saved in:
Bibliographic Details
Main Authors: Kent, David, Toris, Russell
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2976
container_issue
container_start_page 2971
container_title
container_volume
creator Kent, David
Toris, Russell
description Autonomous grasp selection for robot pick-and-place applications makes use of either empirical methods leveraging object databases, which generate grasps for specific objects at the initial cost of modeling effort, or analytical methods, which generalize to novel objects but fail on object subsets that require specific grasping strategies not captured by the algorithm. We introduce a grasp selection algorithm that ranks grasp candidates with a set of grasp metrics augmented with object features, creating an approach that adapts its strategies based on user-specified grasp preferences. We formulate grasp selection as a pairwise ranking problem, which significantly reduces data collection compared to traditional grasp ranking methods and generalizes to novel objects. Our approach outperforms a state-of-the-art grasp calculation baseline and a pointwise ranking formulation of the same problem.
doi_str_mv 10.1109/IROS.2018.8594105
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8594105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8594105</ieee_id><sourcerecordid>8594105</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c29625cdf2077617bbaf398df52b7baf4f6112dca93aac542c312e917ea7c1b53</originalsourceid><addsrcrecordid>eNotj81Kw0AURkdBsNQ8gLiZF0i8dybztwxFa6FQaXVdbiYTGW2Tkkkrvr2FdvWdsznwMfaIUCCCe16sV5tCANrCKlciqBuWOWNRSastuBJu2UScLQer9T3LUvoGAKGttKacMFs1dBjjKfDqOPZdv--Pic8HSge-Cbvgx9h3_BSJv1McfmMKfE3dT-y-HthdS7sUsutO2efry8fsLV-u5otZtcwjGjXmXjgtlG9aAcZoNHVNrXS2aZWozZnLViOKxpOTRF6VwksUwaEJZDzWSk7Z06UbQwjbwxD3NPxtr1_lPxJ9R8g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive Autonomous Grasp Selection via Pairwise Ranking</title><source>IEEE Xplore All Conference Series</source><creator>Kent, David ; Toris, Russell</creator><creatorcontrib>Kent, David ; Toris, Russell</creatorcontrib><description>Autonomous grasp selection for robot pick-and-place applications makes use of either empirical methods leveraging object databases, which generate grasps for specific objects at the initial cost of modeling effort, or analytical methods, which generalize to novel objects but fail on object subsets that require specific grasping strategies not captured by the algorithm. We introduce a grasp selection algorithm that ranks grasp candidates with a set of grasp metrics augmented with object features, creating an approach that adapts its strategies based on user-specified grasp preferences. We formulate grasp selection as a pairwise ranking problem, which significantly reduces data collection compared to traditional grasp ranking methods and generalizes to novel objects. Our approach outperforms a state-of-the-art grasp calculation baseline and a pointwise ranking formulation of the same problem.</description><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781538680940</identifier><identifier>EISBN: 1538680947</identifier><identifier>DOI: 10.1109/IROS.2018.8594105</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; Measurement ; Solid modeling ; Three-dimensional displays ; Training ; Training data</subject><ispartof>2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, p.2971-2976</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8594105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8594105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kent, David</creatorcontrib><creatorcontrib>Toris, Russell</creatorcontrib><title>Adaptive Autonomous Grasp Selection via Pairwise Ranking</title><title>2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</title><addtitle>IROS</addtitle><description>Autonomous grasp selection for robot pick-and-place applications makes use of either empirical methods leveraging object databases, which generate grasps for specific objects at the initial cost of modeling effort, or analytical methods, which generalize to novel objects but fail on object subsets that require specific grasping strategies not captured by the algorithm. We introduce a grasp selection algorithm that ranks grasp candidates with a set of grasp metrics augmented with object features, creating an approach that adapts its strategies based on user-specified grasp preferences. We formulate grasp selection as a pairwise ranking problem, which significantly reduces data collection compared to traditional grasp ranking methods and generalizes to novel objects. Our approach outperforms a state-of-the-art grasp calculation baseline and a pointwise ranking formulation of the same problem.</description><subject>Data models</subject><subject>Measurement</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>Training data</subject><issn>2153-0866</issn><isbn>9781538680940</isbn><isbn>1538680947</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AURkdBsNQ8gLiZF0i8dybztwxFa6FQaXVdbiYTGW2Tkkkrvr2FdvWdsznwMfaIUCCCe16sV5tCANrCKlciqBuWOWNRSastuBJu2UScLQer9T3LUvoGAKGttKacMFs1dBjjKfDqOPZdv--Pic8HSge-Cbvgx9h3_BSJv1McfmMKfE3dT-y-HthdS7sUsutO2efry8fsLV-u5otZtcwjGjXmXjgtlG9aAcZoNHVNrXS2aZWozZnLViOKxpOTRF6VwksUwaEJZDzWSk7Z06UbQwjbwxD3NPxtr1_lPxJ9R8g</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Kent, David</creator><creator>Toris, Russell</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201810</creationdate><title>Adaptive Autonomous Grasp Selection via Pairwise Ranking</title><author>Kent, David ; Toris, Russell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c29625cdf2077617bbaf398df52b7baf4f6112dca93aac542c312e917ea7c1b53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Data models</topic><topic>Measurement</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Kent, David</creatorcontrib><creatorcontrib>Toris, Russell</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kent, David</au><au>Toris, Russell</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive Autonomous Grasp Selection via Pairwise Ranking</atitle><btitle>2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</btitle><stitle>IROS</stitle><date>2018-10</date><risdate>2018</risdate><spage>2971</spage><epage>2976</epage><pages>2971-2976</pages><eissn>2153-0866</eissn><eisbn>9781538680940</eisbn><eisbn>1538680947</eisbn><abstract>Autonomous grasp selection for robot pick-and-place applications makes use of either empirical methods leveraging object databases, which generate grasps for specific objects at the initial cost of modeling effort, or analytical methods, which generalize to novel objects but fail on object subsets that require specific grasping strategies not captured by the algorithm. We introduce a grasp selection algorithm that ranks grasp candidates with a set of grasp metrics augmented with object features, creating an approach that adapts its strategies based on user-specified grasp preferences. We formulate grasp selection as a pairwise ranking problem, which significantly reduces data collection compared to traditional grasp ranking methods and generalizes to novel objects. Our approach outperforms a state-of-the-art grasp calculation baseline and a pointwise ranking formulation of the same problem.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2018.8594105</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-0866
ispartof 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, p.2971-2976
issn 2153-0866
language eng
recordid cdi_ieee_primary_8594105
source IEEE Xplore All Conference Series
subjects Data models
Measurement
Solid modeling
Three-dimensional displays
Training
Training data
title Adaptive Autonomous Grasp Selection via Pairwise Ranking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20Autonomous%20Grasp%20Selection%20via%20Pairwise%20Ranking&rft.btitle=2018%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems%20(IROS)&rft.au=Kent,%20David&rft.date=2018-10&rft.spage=2971&rft.epage=2976&rft.pages=2971-2976&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS.2018.8594105&rft.eisbn=9781538680940&rft.eisbn_list=1538680947&rft_dat=%3Cieee_CHZPO%3E8594105%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-c29625cdf2077617bbaf398df52b7baf4f6112dca93aac542c312e917ea7c1b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8594105&rfr_iscdi=true