Loading…

A Skeleton-Based Hierarchical Method for Detecting 3-D Pole-Like Objects From Mobile LiDAR Point Clouds

The pole-like object detection is of significance for robot navigation, autonomous driving, road infrastructure inventory, and detailed 3-D map generation. In this letter, we develop a skeleton-based hierarchical method for automatic detection of pole-like objects from mobile LiDAR point clouds. Fir...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2019-05, Vol.16 (5), p.801-805
Main Authors: Yang, Juntao, Kang, Zhizhong, Akwensi, Perpetual Hope
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-85c008206b7e360fe60259fc0517f671a68332388aab983842f1479e05c9b9dd3
cites cdi_FETCH-LOGICAL-c293t-85c008206b7e360fe60259fc0517f671a68332388aab983842f1479e05c9b9dd3
container_end_page 805
container_issue 5
container_start_page 801
container_title IEEE geoscience and remote sensing letters
container_volume 16
creator Yang, Juntao
Kang, Zhizhong
Akwensi, Perpetual Hope
description The pole-like object detection is of significance for robot navigation, autonomous driving, road infrastructure inventory, and detailed 3-D map generation. In this letter, we develop a skeleton-based hierarchical method for automatic detection of pole-like objects from mobile LiDAR point clouds. First, coarse extraction of building facades is adopted for the occlusion analysis. Second, slice-based Euclidean clustering algorithm is implemented to derive a set of pole-like object candidates. Third, skeleton-based principal component analysis shape recognition is presented to robustly locate all possible positions of pole-like objects. Finally, a Voronoi-constrained vertical region growing algorithm is proposed to adaptively producing the individual pole-like objects. Experiments were conducted on the public Paris-Lille-3-D data set. Experimental results demonstrate that the proposed method is robust and efficient for extracting the pole-like objects, with average quality of 90.43%. Furthermore, the proposed method outperforms other existing methods, especially for detecting pole-like objects with a large radius.
doi_str_mv 10.1109/LGRS.2018.2882694
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8595426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8595426</ieee_id><sourcerecordid>2215143346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-85c008206b7e360fe60259fc0517f671a68332388aab983842f1479e05c9b9dd3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujiYj-AONNE6-L_Vi39hJBwGQEA5p4t2zdGRTGiu248N87AvHqvDl53nOSB6FHRgeMUf2STperAadMDbhSPNbRFeoxKRWhMmHXpxxJIrX6vkV3IWwp5ZFSSQ-th3i1gxpa15DXPECJZxZ87s3GmrzGc2g3rsSV83gMLZjWNmssyBh_uBpIaneAF8W22wc88W6P566wNeDUjofLjrFNi0e1O5bhHt1UeR3g4TL76Gvy9jmakXQxfR8NU2K4Fi1R0lCqOI2LBERMK4gpl7oyVLKkihOWx0oILpTK80IroSJesSjRQKXRhS5L0UfP57sH736OENps646-6V5mnDPJIiGiuKPYmTLeheChyg7e7nP_mzGanXxmJ5_ZyWd28dl1ns4dCwD_vJJaRjwWf9cebr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215143346</pqid></control><display><type>article</type><title>A Skeleton-Based Hierarchical Method for Detecting 3-D Pole-Like Objects From Mobile LiDAR Point Clouds</title><source>IEEE Xplore (Online service)</source><creator>Yang, Juntao ; Kang, Zhizhong ; Akwensi, Perpetual Hope</creator><creatorcontrib>Yang, Juntao ; Kang, Zhizhong ; Akwensi, Perpetual Hope</creatorcontrib><description>The pole-like object detection is of significance for robot navigation, autonomous driving, road infrastructure inventory, and detailed 3-D map generation. In this letter, we develop a skeleton-based hierarchical method for automatic detection of pole-like objects from mobile LiDAR point clouds. First, coarse extraction of building facades is adopted for the occlusion analysis. Second, slice-based Euclidean clustering algorithm is implemented to derive a set of pole-like object candidates. Third, skeleton-based principal component analysis shape recognition is presented to robustly locate all possible positions of pole-like objects. Finally, a Voronoi-constrained vertical region growing algorithm is proposed to adaptively producing the individual pole-like objects. Experiments were conducted on the public Paris-Lille-3-D data set. Experimental results demonstrate that the proposed method is robust and efficient for extracting the pole-like objects, with average quality of 90.43%. Furthermore, the proposed method outperforms other existing methods, especially for detecting pole-like objects with a large radius.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2018.2882694</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous navigation ; Buildings ; Clustering ; Detection ; Facades ; Laplace equations ; Laplacian smoothing ; Lidar ; Methods ; Navigation ; Object recognition ; Occlusion ; pole-like object extraction ; Principal component analysis ; principal component analysis (PCA) ; Principal components analysis ; Roads ; Shape ; Shape recognition ; Smoothing methods ; Three dimensional models ; Three-dimensional displays ; Voronoi tessellation</subject><ispartof>IEEE geoscience and remote sensing letters, 2019-05, Vol.16 (5), p.801-805</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-85c008206b7e360fe60259fc0517f671a68332388aab983842f1479e05c9b9dd3</citedby><cites>FETCH-LOGICAL-c293t-85c008206b7e360fe60259fc0517f671a68332388aab983842f1479e05c9b9dd3</cites><orcidid>0000-0002-7530-2623 ; 0000-0002-9728-4702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8595426$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yang, Juntao</creatorcontrib><creatorcontrib>Kang, Zhizhong</creatorcontrib><creatorcontrib>Akwensi, Perpetual Hope</creatorcontrib><title>A Skeleton-Based Hierarchical Method for Detecting 3-D Pole-Like Objects From Mobile LiDAR Point Clouds</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>The pole-like object detection is of significance for robot navigation, autonomous driving, road infrastructure inventory, and detailed 3-D map generation. In this letter, we develop a skeleton-based hierarchical method for automatic detection of pole-like objects from mobile LiDAR point clouds. First, coarse extraction of building facades is adopted for the occlusion analysis. Second, slice-based Euclidean clustering algorithm is implemented to derive a set of pole-like object candidates. Third, skeleton-based principal component analysis shape recognition is presented to robustly locate all possible positions of pole-like objects. Finally, a Voronoi-constrained vertical region growing algorithm is proposed to adaptively producing the individual pole-like objects. Experiments were conducted on the public Paris-Lille-3-D data set. Experimental results demonstrate that the proposed method is robust and efficient for extracting the pole-like objects, with average quality of 90.43%. Furthermore, the proposed method outperforms other existing methods, especially for detecting pole-like objects with a large radius.</description><subject>Algorithms</subject><subject>Autonomous navigation</subject><subject>Buildings</subject><subject>Clustering</subject><subject>Detection</subject><subject>Facades</subject><subject>Laplace equations</subject><subject>Laplacian smoothing</subject><subject>Lidar</subject><subject>Methods</subject><subject>Navigation</subject><subject>Object recognition</subject><subject>Occlusion</subject><subject>pole-like object extraction</subject><subject>Principal component analysis</subject><subject>principal component analysis (PCA)</subject><subject>Principal components analysis</subject><subject>Roads</subject><subject>Shape</subject><subject>Shape recognition</subject><subject>Smoothing methods</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Voronoi tessellation</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF1PwjAUhhujiYj-AONNE6-L_Vi39hJBwGQEA5p4t2zdGRTGiu248N87AvHqvDl53nOSB6FHRgeMUf2STperAadMDbhSPNbRFeoxKRWhMmHXpxxJIrX6vkV3IWwp5ZFSSQ-th3i1gxpa15DXPECJZxZ87s3GmrzGc2g3rsSV83gMLZjWNmssyBh_uBpIaneAF8W22wc88W6P566wNeDUjofLjrFNi0e1O5bhHt1UeR3g4TL76Gvy9jmakXQxfR8NU2K4Fi1R0lCqOI2LBERMK4gpl7oyVLKkihOWx0oILpTK80IroSJesSjRQKXRhS5L0UfP57sH736OENps646-6V5mnDPJIiGiuKPYmTLeheChyg7e7nP_mzGanXxmJ5_ZyWd28dl1ns4dCwD_vJJaRjwWf9cebr4</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Yang, Juntao</creator><creator>Kang, Zhizhong</creator><creator>Akwensi, Perpetual Hope</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7530-2623</orcidid><orcidid>https://orcid.org/0000-0002-9728-4702</orcidid></search><sort><creationdate>20190501</creationdate><title>A Skeleton-Based Hierarchical Method for Detecting 3-D Pole-Like Objects From Mobile LiDAR Point Clouds</title><author>Yang, Juntao ; Kang, Zhizhong ; Akwensi, Perpetual Hope</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-85c008206b7e360fe60259fc0517f671a68332388aab983842f1479e05c9b9dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Autonomous navigation</topic><topic>Buildings</topic><topic>Clustering</topic><topic>Detection</topic><topic>Facades</topic><topic>Laplace equations</topic><topic>Laplacian smoothing</topic><topic>Lidar</topic><topic>Methods</topic><topic>Navigation</topic><topic>Object recognition</topic><topic>Occlusion</topic><topic>pole-like object extraction</topic><topic>Principal component analysis</topic><topic>principal component analysis (PCA)</topic><topic>Principal components analysis</topic><topic>Roads</topic><topic>Shape</topic><topic>Shape recognition</topic><topic>Smoothing methods</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Voronoi tessellation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Juntao</creatorcontrib><creatorcontrib>Kang, Zhizhong</creatorcontrib><creatorcontrib>Akwensi, Perpetual Hope</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Juntao</au><au>Kang, Zhizhong</au><au>Akwensi, Perpetual Hope</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Skeleton-Based Hierarchical Method for Detecting 3-D Pole-Like Objects From Mobile LiDAR Point Clouds</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>16</volume><issue>5</issue><spage>801</spage><epage>805</epage><pages>801-805</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>The pole-like object detection is of significance for robot navigation, autonomous driving, road infrastructure inventory, and detailed 3-D map generation. In this letter, we develop a skeleton-based hierarchical method for automatic detection of pole-like objects from mobile LiDAR point clouds. First, coarse extraction of building facades is adopted for the occlusion analysis. Second, slice-based Euclidean clustering algorithm is implemented to derive a set of pole-like object candidates. Third, skeleton-based principal component analysis shape recognition is presented to robustly locate all possible positions of pole-like objects. Finally, a Voronoi-constrained vertical region growing algorithm is proposed to adaptively producing the individual pole-like objects. Experiments were conducted on the public Paris-Lille-3-D data set. Experimental results demonstrate that the proposed method is robust and efficient for extracting the pole-like objects, with average quality of 90.43%. Furthermore, the proposed method outperforms other existing methods, especially for detecting pole-like objects with a large radius.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2018.2882694</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7530-2623</orcidid><orcidid>https://orcid.org/0000-0002-9728-4702</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2019-05, Vol.16 (5), p.801-805
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_8595426
source IEEE Xplore (Online service)
subjects Algorithms
Autonomous navigation
Buildings
Clustering
Detection
Facades
Laplace equations
Laplacian smoothing
Lidar
Methods
Navigation
Object recognition
Occlusion
pole-like object extraction
Principal component analysis
principal component analysis (PCA)
Principal components analysis
Roads
Shape
Shape recognition
Smoothing methods
Three dimensional models
Three-dimensional displays
Voronoi tessellation
title A Skeleton-Based Hierarchical Method for Detecting 3-D Pole-Like Objects From Mobile LiDAR Point Clouds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Skeleton-Based%20Hierarchical%20Method%20for%20Detecting%203-D%20Pole-Like%20Objects%20From%20Mobile%20LiDAR%20Point%20Clouds&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Yang,%20Juntao&rft.date=2019-05-01&rft.volume=16&rft.issue=5&rft.spage=801&rft.epage=805&rft.pages=801-805&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2018.2882694&rft_dat=%3Cproquest_ieee_%3E2215143346%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-85c008206b7e360fe60259fc0517f671a68332388aab983842f1479e05c9b9dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2215143346&rft_id=info:pmid/&rft_ieee_id=8595426&rfr_iscdi=true