Loading…
The effect of quantization on SAR parameter estimation
The multiplicative model is commonly assumed for SAR statistical description, and it implies that the noise level is proportional to signal level. SAR digital imagery is usually available in linear detection with uniform quantization. This quantization can severely affect the estimation of statistic...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2665 vol.6 |
container_issue | |
container_start_page | 2663 |
container_title | |
container_volume | 6 |
creator | Mascarenhas, N.D.A. Dutra, L.V. Frery, A.C. |
description | The multiplicative model is commonly assumed for SAR statistical description, and it implies that the noise level is proportional to signal level. SAR digital imagery is usually available in linear detection with uniform quantization. This quantization can severely affect the estimation of statistical parameters for SAR data, mainly for low and high signal levels, because of the existence of a limited number of possible values. This may lead to an underestimation of scale parameters, like the standard deviation, and derived quantities (coefficient of variation -CV-, Li's variance ratio parameter etc.). In this paper images composed of segments of different average levels and textures are analyzed and areas where the estimated variance of the underlying clutter is negative are identified and carefully scrutinized through a Monte Carlo experience using the G/sub A//sup 0/ distribution. |
doi_str_mv | 10.1109/IGARSS.2000.859674 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_859674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>859674</ieee_id><sourcerecordid>859674</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-e021792c0dd61ea59f952d4fa32aba40c63347dd7c44b98ba5685e31825e000d3</originalsourceid><addsrcrecordid>eNotj8tKw0AUhgdEUGtfoKt5gcQz95llKFoLBaGp63KSOYMj9mIyLvTpDVb44V988F8YWwiohYDwsF4127atJQDU3gTr9BW7A-dBWWUC3LD5OL5PEFTQPrhbZndvxCkl6gs_Jf75hceSf7Dk05FPapstP-OAByo0cBpLPvyxe3ad8GOk-b_P2OvT4275XG1eVutls6myAF0qAilckD3EaAWhCSkYGXVCJbFDDb1VSrsYXa91F3yHxnpDSnhpaBoZ1YwtLrmZiPbnYaofvveXZ-oXm0dDvg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The effect of quantization on SAR parameter estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mascarenhas, N.D.A. ; Dutra, L.V. ; Frery, A.C.</creator><creatorcontrib>Mascarenhas, N.D.A. ; Dutra, L.V. ; Frery, A.C.</creatorcontrib><description>The multiplicative model is commonly assumed for SAR statistical description, and it implies that the noise level is proportional to signal level. SAR digital imagery is usually available in linear detection with uniform quantization. This quantization can severely affect the estimation of statistical parameters for SAR data, mainly for low and high signal levels, because of the existence of a limited number of possible values. This may lead to an underestimation of scale parameters, like the standard deviation, and derived quantities (coefficient of variation -CV-, Li's variance ratio parameter etc.). In this paper images composed of segments of different average levels and textures are analyzed and areas where the estimated variance of the underlying clutter is negative are identified and carefully scrutinized through a Monte Carlo experience using the G/sub A//sup 0/ distribution.</description><identifier>ISBN: 0780363590</identifier><identifier>ISBN: 9780780363595</identifier><identifier>DOI: 10.1109/IGARSS.2000.859674</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive filters ; Clustering algorithms ; Data analysis ; Histograms ; Image analysis ; Noise level ; Parameter estimation ; Quantization ; Signal to noise ratio ; Speckle</subject><ispartof>IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), 2000, Vol.6, p.2663-2665 vol.6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/859674$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/859674$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mascarenhas, N.D.A.</creatorcontrib><creatorcontrib>Dutra, L.V.</creatorcontrib><creatorcontrib>Frery, A.C.</creatorcontrib><title>The effect of quantization on SAR parameter estimation</title><title>IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120)</title><addtitle>IGARSS</addtitle><description>The multiplicative model is commonly assumed for SAR statistical description, and it implies that the noise level is proportional to signal level. SAR digital imagery is usually available in linear detection with uniform quantization. This quantization can severely affect the estimation of statistical parameters for SAR data, mainly for low and high signal levels, because of the existence of a limited number of possible values. This may lead to an underestimation of scale parameters, like the standard deviation, and derived quantities (coefficient of variation -CV-, Li's variance ratio parameter etc.). In this paper images composed of segments of different average levels and textures are analyzed and areas where the estimated variance of the underlying clutter is negative are identified and carefully scrutinized through a Monte Carlo experience using the G/sub A//sup 0/ distribution.</description><subject>Adaptive filters</subject><subject>Clustering algorithms</subject><subject>Data analysis</subject><subject>Histograms</subject><subject>Image analysis</subject><subject>Noise level</subject><subject>Parameter estimation</subject><subject>Quantization</subject><subject>Signal to noise ratio</subject><subject>Speckle</subject><isbn>0780363590</isbn><isbn>9780780363595</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AUhgdEUGtfoKt5gcQz95llKFoLBaGp63KSOYMj9mIyLvTpDVb44V988F8YWwiohYDwsF4127atJQDU3gTr9BW7A-dBWWUC3LD5OL5PEFTQPrhbZndvxCkl6gs_Jf75hceSf7Dk05FPapstP-OAByo0cBpLPvyxe3ad8GOk-b_P2OvT4275XG1eVutls6myAF0qAilckD3EaAWhCSkYGXVCJbFDDb1VSrsYXa91F3yHxnpDSnhpaBoZ1YwtLrmZiPbnYaofvveXZ-oXm0dDvg</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Mascarenhas, N.D.A.</creator><creator>Dutra, L.V.</creator><creator>Frery, A.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>The effect of quantization on SAR parameter estimation</title><author>Mascarenhas, N.D.A. ; Dutra, L.V. ; Frery, A.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-e021792c0dd61ea59f952d4fa32aba40c63347dd7c44b98ba5685e31825e000d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive filters</topic><topic>Clustering algorithms</topic><topic>Data analysis</topic><topic>Histograms</topic><topic>Image analysis</topic><topic>Noise level</topic><topic>Parameter estimation</topic><topic>Quantization</topic><topic>Signal to noise ratio</topic><topic>Speckle</topic><toplevel>online_resources</toplevel><creatorcontrib>Mascarenhas, N.D.A.</creatorcontrib><creatorcontrib>Dutra, L.V.</creatorcontrib><creatorcontrib>Frery, A.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mascarenhas, N.D.A.</au><au>Dutra, L.V.</au><au>Frery, A.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The effect of quantization on SAR parameter estimation</atitle><btitle>IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120)</btitle><stitle>IGARSS</stitle><date>2000</date><risdate>2000</risdate><volume>6</volume><spage>2663</spage><epage>2665 vol.6</epage><pages>2663-2665 vol.6</pages><isbn>0780363590</isbn><isbn>9780780363595</isbn><abstract>The multiplicative model is commonly assumed for SAR statistical description, and it implies that the noise level is proportional to signal level. SAR digital imagery is usually available in linear detection with uniform quantization. This quantization can severely affect the estimation of statistical parameters for SAR data, mainly for low and high signal levels, because of the existence of a limited number of possible values. This may lead to an underestimation of scale parameters, like the standard deviation, and derived quantities (coefficient of variation -CV-, Li's variance ratio parameter etc.). In this paper images composed of segments of different average levels and textures are analyzed and areas where the estimated variance of the underlying clutter is negative are identified and carefully scrutinized through a Monte Carlo experience using the G/sub A//sup 0/ distribution.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2000.859674</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780363590 |
ispartof | IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), 2000, Vol.6, p.2663-2665 vol.6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_859674 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive filters Clustering algorithms Data analysis Histograms Image analysis Noise level Parameter estimation Quantization Signal to noise ratio Speckle |
title | The effect of quantization on SAR parameter estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20effect%20of%20quantization%20on%20SAR%20parameter%20estimation&rft.btitle=IGARSS%202000.%20IEEE%202000%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium.%20Taking%20the%20Pulse%20of%20the%20Planet:%20The%20Role%20of%20Remote%20Sensing%20in%20Managing%20the%20Environment.%20Proceedings%20(Cat.%20No.00CH37120)&rft.au=Mascarenhas,%20N.D.A.&rft.date=2000&rft.volume=6&rft.spage=2663&rft.epage=2665%20vol.6&rft.pages=2663-2665%20vol.6&rft.isbn=0780363590&rft.isbn_list=9780780363595&rft_id=info:doi/10.1109/IGARSS.2000.859674&rft_dat=%3Cieee_6IE%3E859674%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-e021792c0dd61ea59f952d4fa32aba40c63347dd7c44b98ba5685e31825e000d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=859674&rfr_iscdi=true |