Loading…

The effect of quantization on SAR parameter estimation

The multiplicative model is commonly assumed for SAR statistical description, and it implies that the noise level is proportional to signal level. SAR digital imagery is usually available in linear detection with uniform quantization. This quantization can severely affect the estimation of statistic...

Full description

Saved in:
Bibliographic Details
Main Authors: Mascarenhas, N.D.A., Dutra, L.V., Frery, A.C.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2665 vol.6
container_issue
container_start_page 2663
container_title
container_volume 6
creator Mascarenhas, N.D.A.
Dutra, L.V.
Frery, A.C.
description The multiplicative model is commonly assumed for SAR statistical description, and it implies that the noise level is proportional to signal level. SAR digital imagery is usually available in linear detection with uniform quantization. This quantization can severely affect the estimation of statistical parameters for SAR data, mainly for low and high signal levels, because of the existence of a limited number of possible values. This may lead to an underestimation of scale parameters, like the standard deviation, and derived quantities (coefficient of variation -CV-, Li's variance ratio parameter etc.). In this paper images composed of segments of different average levels and textures are analyzed and areas where the estimated variance of the underlying clutter is negative are identified and carefully scrutinized through a Monte Carlo experience using the G/sub A//sup 0/ distribution.
doi_str_mv 10.1109/IGARSS.2000.859674
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_859674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>859674</ieee_id><sourcerecordid>859674</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-e021792c0dd61ea59f952d4fa32aba40c63347dd7c44b98ba5685e31825e000d3</originalsourceid><addsrcrecordid>eNotj8tKw0AUhgdEUGtfoKt5gcQz95llKFoLBaGp63KSOYMj9mIyLvTpDVb44V988F8YWwiohYDwsF4127atJQDU3gTr9BW7A-dBWWUC3LD5OL5PEFTQPrhbZndvxCkl6gs_Jf75hceSf7Dk05FPapstP-OAByo0cBpLPvyxe3ad8GOk-b_P2OvT4275XG1eVutls6myAF0qAilckD3EaAWhCSkYGXVCJbFDDb1VSrsYXa91F3yHxnpDSnhpaBoZ1YwtLrmZiPbnYaofvveXZ-oXm0dDvg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The effect of quantization on SAR parameter estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mascarenhas, N.D.A. ; Dutra, L.V. ; Frery, A.C.</creator><creatorcontrib>Mascarenhas, N.D.A. ; Dutra, L.V. ; Frery, A.C.</creatorcontrib><description>The multiplicative model is commonly assumed for SAR statistical description, and it implies that the noise level is proportional to signal level. SAR digital imagery is usually available in linear detection with uniform quantization. This quantization can severely affect the estimation of statistical parameters for SAR data, mainly for low and high signal levels, because of the existence of a limited number of possible values. This may lead to an underestimation of scale parameters, like the standard deviation, and derived quantities (coefficient of variation -CV-, Li's variance ratio parameter etc.). In this paper images composed of segments of different average levels and textures are analyzed and areas where the estimated variance of the underlying clutter is negative are identified and carefully scrutinized through a Monte Carlo experience using the G/sub A//sup 0/ distribution.</description><identifier>ISBN: 0780363590</identifier><identifier>ISBN: 9780780363595</identifier><identifier>DOI: 10.1109/IGARSS.2000.859674</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive filters ; Clustering algorithms ; Data analysis ; Histograms ; Image analysis ; Noise level ; Parameter estimation ; Quantization ; Signal to noise ratio ; Speckle</subject><ispartof>IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), 2000, Vol.6, p.2663-2665 vol.6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/859674$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/859674$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mascarenhas, N.D.A.</creatorcontrib><creatorcontrib>Dutra, L.V.</creatorcontrib><creatorcontrib>Frery, A.C.</creatorcontrib><title>The effect of quantization on SAR parameter estimation</title><title>IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120)</title><addtitle>IGARSS</addtitle><description>The multiplicative model is commonly assumed for SAR statistical description, and it implies that the noise level is proportional to signal level. SAR digital imagery is usually available in linear detection with uniform quantization. This quantization can severely affect the estimation of statistical parameters for SAR data, mainly for low and high signal levels, because of the existence of a limited number of possible values. This may lead to an underestimation of scale parameters, like the standard deviation, and derived quantities (coefficient of variation -CV-, Li's variance ratio parameter etc.). In this paper images composed of segments of different average levels and textures are analyzed and areas where the estimated variance of the underlying clutter is negative are identified and carefully scrutinized through a Monte Carlo experience using the G/sub A//sup 0/ distribution.</description><subject>Adaptive filters</subject><subject>Clustering algorithms</subject><subject>Data analysis</subject><subject>Histograms</subject><subject>Image analysis</subject><subject>Noise level</subject><subject>Parameter estimation</subject><subject>Quantization</subject><subject>Signal to noise ratio</subject><subject>Speckle</subject><isbn>0780363590</isbn><isbn>9780780363595</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AUhgdEUGtfoKt5gcQz95llKFoLBaGp63KSOYMj9mIyLvTpDVb44V988F8YWwiohYDwsF4127atJQDU3gTr9BW7A-dBWWUC3LD5OL5PEFTQPrhbZndvxCkl6gs_Jf75hceSf7Dk05FPapstP-OAByo0cBpLPvyxe3ad8GOk-b_P2OvT4275XG1eVutls6myAF0qAilckD3EaAWhCSkYGXVCJbFDDb1VSrsYXa91F3yHxnpDSnhpaBoZ1YwtLrmZiPbnYaofvveXZ-oXm0dDvg</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Mascarenhas, N.D.A.</creator><creator>Dutra, L.V.</creator><creator>Frery, A.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>The effect of quantization on SAR parameter estimation</title><author>Mascarenhas, N.D.A. ; Dutra, L.V. ; Frery, A.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-e021792c0dd61ea59f952d4fa32aba40c63347dd7c44b98ba5685e31825e000d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive filters</topic><topic>Clustering algorithms</topic><topic>Data analysis</topic><topic>Histograms</topic><topic>Image analysis</topic><topic>Noise level</topic><topic>Parameter estimation</topic><topic>Quantization</topic><topic>Signal to noise ratio</topic><topic>Speckle</topic><toplevel>online_resources</toplevel><creatorcontrib>Mascarenhas, N.D.A.</creatorcontrib><creatorcontrib>Dutra, L.V.</creatorcontrib><creatorcontrib>Frery, A.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mascarenhas, N.D.A.</au><au>Dutra, L.V.</au><au>Frery, A.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The effect of quantization on SAR parameter estimation</atitle><btitle>IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120)</btitle><stitle>IGARSS</stitle><date>2000</date><risdate>2000</risdate><volume>6</volume><spage>2663</spage><epage>2665 vol.6</epage><pages>2663-2665 vol.6</pages><isbn>0780363590</isbn><isbn>9780780363595</isbn><abstract>The multiplicative model is commonly assumed for SAR statistical description, and it implies that the noise level is proportional to signal level. SAR digital imagery is usually available in linear detection with uniform quantization. This quantization can severely affect the estimation of statistical parameters for SAR data, mainly for low and high signal levels, because of the existence of a limited number of possible values. This may lead to an underestimation of scale parameters, like the standard deviation, and derived quantities (coefficient of variation -CV-, Li's variance ratio parameter etc.). In this paper images composed of segments of different average levels and textures are analyzed and areas where the estimated variance of the underlying clutter is negative are identified and carefully scrutinized through a Monte Carlo experience using the G/sub A//sup 0/ distribution.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2000.859674</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780363590
ispartof IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), 2000, Vol.6, p.2663-2665 vol.6
issn
language eng
recordid cdi_ieee_primary_859674
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive filters
Clustering algorithms
Data analysis
Histograms
Image analysis
Noise level
Parameter estimation
Quantization
Signal to noise ratio
Speckle
title The effect of quantization on SAR parameter estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20effect%20of%20quantization%20on%20SAR%20parameter%20estimation&rft.btitle=IGARSS%202000.%20IEEE%202000%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium.%20Taking%20the%20Pulse%20of%20the%20Planet:%20The%20Role%20of%20Remote%20Sensing%20in%20Managing%20the%20Environment.%20Proceedings%20(Cat.%20No.00CH37120)&rft.au=Mascarenhas,%20N.D.A.&rft.date=2000&rft.volume=6&rft.spage=2663&rft.epage=2665%20vol.6&rft.pages=2663-2665%20vol.6&rft.isbn=0780363590&rft.isbn_list=9780780363595&rft_id=info:doi/10.1109/IGARSS.2000.859674&rft_dat=%3Cieee_6IE%3E859674%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-e021792c0dd61ea59f952d4fa32aba40c63347dd7c44b98ba5685e31825e000d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=859674&rfr_iscdi=true