Loading…

A Data-Driven Model of Virtual Power Plants in Day-Ahead Unit Commitment

Due to the increasing penetration of distributed energy resources (DERs), power system operators face significant challenges of ensuring the effective integration of DERs. The virtual power plant (VPP) enables DERs to provide their valuable services by aggregating them and participating in the whole...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2019-11, Vol.34 (6), p.5125-5135
Main Authors: Babaei, Sadra, Zhao, Chaoyue, Fan, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-7e4ca0598db68a390bb2e9b3c5536116ef96736316a308cce8f0fb63248133953
cites cdi_FETCH-LOGICAL-c388t-7e4ca0598db68a390bb2e9b3c5536116ef96736316a308cce8f0fb63248133953
container_end_page 5135
container_issue 6
container_start_page 5125
container_title IEEE transactions on power systems
container_volume 34
creator Babaei, Sadra
Zhao, Chaoyue
Fan, Lei
description Due to the increasing penetration of distributed energy resources (DERs), power system operators face significant challenges of ensuring the effective integration of DERs. The virtual power plant (VPP) enables DERs to provide their valuable services by aggregating them and participating in the wholesale market as a single entity. However, the available capacity of VPP depends on its DER outputs, which is time varying and not exactly known when the independent system operator runs the day-ahead unit commitment engine. In this study, we develop a model to evaluate the physical characteristics of the VPP, i.e., its maximum capacity and ramping capabilities, given the uncertainty in wind power output and load consumption. The proposed model is based on a distributionally robust optimization approach that utilizes moment information (e.g., mean and covariance) of the unknown parameter. We reformulate the model as a binary second-order conic program and develop a separation framework to address it. We first solve a two-stage problem and then benchmark it with a multi-stage case. Case studies are conducted to show the performance of the proposed approach.
doi_str_mv 10.1109/TPWRS.2018.2890714
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8598895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8598895</ieee_id><sourcerecordid>2310665875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-7e4ca0598db68a390bb2e9b3c5536116ef96736316a308cce8f0fb63248133953</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-Ab008bw43dLu9EhAxQQjUdBj011m45L9wG7R8O9dhHiawzzvfDyMXQsYCAHmbjH_eH0bxCBwEKOBRAxPWE8ohRHoxJyyHiCqCI2Cc3bRtmsA0F2jx6YjPnHBRRNffFPNn5sVlbzJ-Xvhw9aVfN78kOfz0tWh5UXdwbto9EluxZd1Efi4qaoiVFSHS3aWu7Klq2Pts-XD_WI8jWYvj0_j0SzKJGKIEhpmDpTBVarRSQNpGpNJZaaU1EJoyo1OpJZCOwmYZYQ55KmW8RCFlEbJPrs9zN345mtLbbDrZuvrbqWNpei-UpjsqfhAZb5pW0-53fiicn5nBdi9MftnzO6N2aOxLnRzCBVE9B_A7thOnPwFg7xlYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310665875</pqid></control><display><type>article</type><title>A Data-Driven Model of Virtual Power Plants in Day-Ahead Unit Commitment</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Babaei, Sadra ; Zhao, Chaoyue ; Fan, Lei</creator><creatorcontrib>Babaei, Sadra ; Zhao, Chaoyue ; Fan, Lei</creatorcontrib><description>Due to the increasing penetration of distributed energy resources (DERs), power system operators face significant challenges of ensuring the effective integration of DERs. The virtual power plant (VPP) enables DERs to provide their valuable services by aggregating them and participating in the wholesale market as a single entity. However, the available capacity of VPP depends on its DER outputs, which is time varying and not exactly known when the independent system operator runs the day-ahead unit commitment engine. In this study, we develop a model to evaluate the physical characteristics of the VPP, i.e., its maximum capacity and ramping capabilities, given the uncertainty in wind power output and load consumption. The proposed model is based on a distributionally robust optimization approach that utilizes moment information (e.g., mean and covariance) of the unknown parameter. We reformulate the model as a binary second-order conic program and develop a separation framework to address it. We first solve a two-stage problem and then benchmark it with a multi-stage case. Case studies are conducted to show the performance of the proposed approach.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2018.2890714</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Covariance ; Distributed generation ; distributionally robust optimization ; Electric power distribution ; Electric power generation ; Electricity market ; Electricity supply industry ; Energy sources ; Generators ; Load modeling ; Optimization ; Physical properties ; Power consumption ; Power generation ; Probability distribution ; Uncertainty ; Unit commitment ; virtual power plant ; Virtual power plants ; Wind power</subject><ispartof>IEEE transactions on power systems, 2019-11, Vol.34 (6), p.5125-5135</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-7e4ca0598db68a390bb2e9b3c5536116ef96736316a308cce8f0fb63248133953</citedby><cites>FETCH-LOGICAL-c388t-7e4ca0598db68a390bb2e9b3c5536116ef96736316a308cce8f0fb63248133953</cites><orcidid>0000-0003-0442-2991 ; 0000-0003-2157-310X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8598895$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Babaei, Sadra</creatorcontrib><creatorcontrib>Zhao, Chaoyue</creatorcontrib><creatorcontrib>Fan, Lei</creatorcontrib><title>A Data-Driven Model of Virtual Power Plants in Day-Ahead Unit Commitment</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Due to the increasing penetration of distributed energy resources (DERs), power system operators face significant challenges of ensuring the effective integration of DERs. The virtual power plant (VPP) enables DERs to provide their valuable services by aggregating them and participating in the wholesale market as a single entity. However, the available capacity of VPP depends on its DER outputs, which is time varying and not exactly known when the independent system operator runs the day-ahead unit commitment engine. In this study, we develop a model to evaluate the physical characteristics of the VPP, i.e., its maximum capacity and ramping capabilities, given the uncertainty in wind power output and load consumption. The proposed model is based on a distributionally robust optimization approach that utilizes moment information (e.g., mean and covariance) of the unknown parameter. We reformulate the model as a binary second-order conic program and develop a separation framework to address it. We first solve a two-stage problem and then benchmark it with a multi-stage case. Case studies are conducted to show the performance of the proposed approach.</description><subject>Covariance</subject><subject>Distributed generation</subject><subject>distributionally robust optimization</subject><subject>Electric power distribution</subject><subject>Electric power generation</subject><subject>Electricity market</subject><subject>Electricity supply industry</subject><subject>Energy sources</subject><subject>Generators</subject><subject>Load modeling</subject><subject>Optimization</subject><subject>Physical properties</subject><subject>Power consumption</subject><subject>Power generation</subject><subject>Probability distribution</subject><subject>Uncertainty</subject><subject>Unit commitment</subject><subject>virtual power plant</subject><subject>Virtual power plants</subject><subject>Wind power</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhhujiYj-Ab008bw43dLu9EhAxQQjUdBj011m45L9wG7R8O9dhHiawzzvfDyMXQsYCAHmbjH_eH0bxCBwEKOBRAxPWE8ohRHoxJyyHiCqCI2Cc3bRtmsA0F2jx6YjPnHBRRNffFPNn5sVlbzJ-Xvhw9aVfN78kOfz0tWh5UXdwbto9EluxZd1Efi4qaoiVFSHS3aWu7Klq2Pts-XD_WI8jWYvj0_j0SzKJGKIEhpmDpTBVarRSQNpGpNJZaaU1EJoyo1OpJZCOwmYZYQ55KmW8RCFlEbJPrs9zN345mtLbbDrZuvrbqWNpei-UpjsqfhAZb5pW0-53fiicn5nBdi9MftnzO6N2aOxLnRzCBVE9B_A7thOnPwFg7xlYA</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Babaei, Sadra</creator><creator>Zhao, Chaoyue</creator><creator>Fan, Lei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0442-2991</orcidid><orcidid>https://orcid.org/0000-0003-2157-310X</orcidid></search><sort><creationdate>201911</creationdate><title>A Data-Driven Model of Virtual Power Plants in Day-Ahead Unit Commitment</title><author>Babaei, Sadra ; Zhao, Chaoyue ; Fan, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-7e4ca0598db68a390bb2e9b3c5536116ef96736316a308cce8f0fb63248133953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Covariance</topic><topic>Distributed generation</topic><topic>distributionally robust optimization</topic><topic>Electric power distribution</topic><topic>Electric power generation</topic><topic>Electricity market</topic><topic>Electricity supply industry</topic><topic>Energy sources</topic><topic>Generators</topic><topic>Load modeling</topic><topic>Optimization</topic><topic>Physical properties</topic><topic>Power consumption</topic><topic>Power generation</topic><topic>Probability distribution</topic><topic>Uncertainty</topic><topic>Unit commitment</topic><topic>virtual power plant</topic><topic>Virtual power plants</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babaei, Sadra</creatorcontrib><creatorcontrib>Zhao, Chaoyue</creatorcontrib><creatorcontrib>Fan, Lei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babaei, Sadra</au><au>Zhao, Chaoyue</au><au>Fan, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data-Driven Model of Virtual Power Plants in Day-Ahead Unit Commitment</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2019-11</date><risdate>2019</risdate><volume>34</volume><issue>6</issue><spage>5125</spage><epage>5135</epage><pages>5125-5135</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Due to the increasing penetration of distributed energy resources (DERs), power system operators face significant challenges of ensuring the effective integration of DERs. The virtual power plant (VPP) enables DERs to provide their valuable services by aggregating them and participating in the wholesale market as a single entity. However, the available capacity of VPP depends on its DER outputs, which is time varying and not exactly known when the independent system operator runs the day-ahead unit commitment engine. In this study, we develop a model to evaluate the physical characteristics of the VPP, i.e., its maximum capacity and ramping capabilities, given the uncertainty in wind power output and load consumption. The proposed model is based on a distributionally robust optimization approach that utilizes moment information (e.g., mean and covariance) of the unknown parameter. We reformulate the model as a binary second-order conic program and develop a separation framework to address it. We first solve a two-stage problem and then benchmark it with a multi-stage case. Case studies are conducted to show the performance of the proposed approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2018.2890714</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0442-2991</orcidid><orcidid>https://orcid.org/0000-0003-2157-310X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2019-11, Vol.34 (6), p.5125-5135
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_8598895
source IEEE Electronic Library (IEL) Journals
subjects Covariance
Distributed generation
distributionally robust optimization
Electric power distribution
Electric power generation
Electricity market
Electricity supply industry
Energy sources
Generators
Load modeling
Optimization
Physical properties
Power consumption
Power generation
Probability distribution
Uncertainty
Unit commitment
virtual power plant
Virtual power plants
Wind power
title A Data-Driven Model of Virtual Power Plants in Day-Ahead Unit Commitment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data-Driven%20Model%20of%20Virtual%20Power%20Plants%20in%20Day-Ahead%20Unit%20Commitment&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Babaei,%20Sadra&rft.date=2019-11&rft.volume=34&rft.issue=6&rft.spage=5125&rft.epage=5135&rft.pages=5125-5135&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2018.2890714&rft_dat=%3Cproquest_ieee_%3E2310665875%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-7e4ca0598db68a390bb2e9b3c5536116ef96736316a308cce8f0fb63248133953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2310665875&rft_id=info:pmid/&rft_ieee_id=8598895&rfr_iscdi=true