Loading…

Convolutional Neural Networks for 3D Vision System Data : A review

3D vision systems are becoming increasingly accessible and as such there has been a lot of progress in the design of 3D Convolutional Neural Networks (3D CNNs). This paper will provide a review of the significant enhancements which have been made in deep learning techniques for understanding data fr...

Full description

Saved in:
Bibliographic Details
Main Authors: OrMahony, Niall, Campbell, Sean, Krpalkova, Lenka, Carvalho, Anderson, Velasco-Hernandez, Gustavo Adolfo, Riordan, Daniel, Walsh, Joseph
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 165
container_issue
container_start_page 160
container_title
container_volume
creator OrMahony, Niall
Campbell, Sean
Krpalkova, Lenka
Carvalho, Anderson
Velasco-Hernandez, Gustavo Adolfo
Riordan, Daniel
Walsh, Joseph
description 3D vision systems are becoming increasingly accessible and as such there has been a lot of progress in the design of 3D Convolutional Neural Networks (3D CNNs). This paper will provide a review of the significant enhancements which have been made in deep learning techniques for understanding data from 3D vision systems in the tasks of 3D object classification and 3D semantic segmentation. We compare the documented results the state-of-the-art architectures have achieved on benchmark datasets and outline the advantages of the different techniques which have been developed in a number of different categories of approaches including view-based, voxelbased and point-based architectures amongst others. We also give insights into common themes and trends in this very active field of research.
doi_str_mv 10.1109/ICSensT.2018.8603642
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8603642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8603642</ieee_id><sourcerecordid>8603642</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-30831a61b28759f180378b369ff7af39aaf25d06f4b96b207861608f6774a2e3</originalsourceid><addsrcrecordid>eNotj9FKwzAUQKMgOGa_QB_yA503ue3NjW-zczoY-tDh60gxgWrXStJt7O8V3dN5OHDgCHGnYKYU2PtVVfs-bWYaFM-YAKnQFyKzhlWJTKUqDF2KiVYl5QwGr0WW0icAKGKNlifisRr6w9Dtx3boXSdf_T7-YTwO8SvJMESJC_nepl8v61Ma_U4u3Ojkg5zL6A-tP96Iq-C65LMzp6JePm2ql3z99ryq5uu8tTDmCIzKkWo0m9IGxYCGGyQbgnEBrXNBlx9AoWgsNRoMkyLgQMYUTnucitv_auu9337HdufiaXt-xh85Ykmv</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Convolutional Neural Networks for 3D Vision System Data : A review</title><source>IEEE Xplore All Conference Series</source><creator>OrMahony, Niall ; Campbell, Sean ; Krpalkova, Lenka ; Carvalho, Anderson ; Velasco-Hernandez, Gustavo Adolfo ; Riordan, Daniel ; Walsh, Joseph</creator><creatorcontrib>OrMahony, Niall ; Campbell, Sean ; Krpalkova, Lenka ; Carvalho, Anderson ; Velasco-Hernandez, Gustavo Adolfo ; Riordan, Daniel ; Walsh, Joseph</creatorcontrib><description>3D vision systems are becoming increasingly accessible and as such there has been a lot of progress in the design of 3D Convolutional Neural Networks (3D CNNs). This paper will provide a review of the significant enhancements which have been made in deep learning techniques for understanding data from 3D vision systems in the tasks of 3D object classification and 3D semantic segmentation. We compare the documented results the state-of-the-art architectures have achieved on benchmark datasets and outline the advantages of the different techniques which have been developed in a number of different categories of approaches including view-based, voxelbased and point-based architectures amongst others. We also give insights into common themes and trends in this very active field of research.</description><identifier>EISSN: 2156-8073</identifier><identifier>EISBN: 9781538651476</identifier><identifier>EISBN: 1538651475</identifier><identifier>DOI: 10.1109/ICSensT.2018.8603642</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D Vision Systems ; 3DCNNs ; Computer architecture ; Deep Learning ; Image segmentation ; Kernel ; Shape ; Task analysis ; Three-dimensional displays ; Two dimensional displays</subject><ispartof>2018 12th International Conference on Sensing Technology (ICST), 2018, p.160-165</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8603642$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8603642$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>OrMahony, Niall</creatorcontrib><creatorcontrib>Campbell, Sean</creatorcontrib><creatorcontrib>Krpalkova, Lenka</creatorcontrib><creatorcontrib>Carvalho, Anderson</creatorcontrib><creatorcontrib>Velasco-Hernandez, Gustavo Adolfo</creatorcontrib><creatorcontrib>Riordan, Daniel</creatorcontrib><creatorcontrib>Walsh, Joseph</creatorcontrib><title>Convolutional Neural Networks for 3D Vision System Data : A review</title><title>2018 12th International Conference on Sensing Technology (ICST)</title><addtitle>ICSensT</addtitle><description>3D vision systems are becoming increasingly accessible and as such there has been a lot of progress in the design of 3D Convolutional Neural Networks (3D CNNs). This paper will provide a review of the significant enhancements which have been made in deep learning techniques for understanding data from 3D vision systems in the tasks of 3D object classification and 3D semantic segmentation. We compare the documented results the state-of-the-art architectures have achieved on benchmark datasets and outline the advantages of the different techniques which have been developed in a number of different categories of approaches including view-based, voxelbased and point-based architectures amongst others. We also give insights into common themes and trends in this very active field of research.</description><subject>3D Vision Systems</subject><subject>3DCNNs</subject><subject>Computer architecture</subject><subject>Deep Learning</subject><subject>Image segmentation</subject><subject>Kernel</subject><subject>Shape</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><issn>2156-8073</issn><isbn>9781538651476</isbn><isbn>1538651475</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKwzAUQKMgOGa_QB_yA503ue3NjW-zczoY-tDh60gxgWrXStJt7O8V3dN5OHDgCHGnYKYU2PtVVfs-bWYaFM-YAKnQFyKzhlWJTKUqDF2KiVYl5QwGr0WW0icAKGKNlifisRr6w9Dtx3boXSdf_T7-YTwO8SvJMESJC_nepl8v61Ma_U4u3Ojkg5zL6A-tP96Iq-C65LMzp6JePm2ql3z99ryq5uu8tTDmCIzKkWo0m9IGxYCGGyQbgnEBrXNBlx9AoWgsNRoMkyLgQMYUTnucitv_auu9337HdufiaXt-xh85Ykmv</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>OrMahony, Niall</creator><creator>Campbell, Sean</creator><creator>Krpalkova, Lenka</creator><creator>Carvalho, Anderson</creator><creator>Velasco-Hernandez, Gustavo Adolfo</creator><creator>Riordan, Daniel</creator><creator>Walsh, Joseph</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201812</creationdate><title>Convolutional Neural Networks for 3D Vision System Data : A review</title><author>OrMahony, Niall ; Campbell, Sean ; Krpalkova, Lenka ; Carvalho, Anderson ; Velasco-Hernandez, Gustavo Adolfo ; Riordan, Daniel ; Walsh, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-30831a61b28759f180378b369ff7af39aaf25d06f4b96b207861608f6774a2e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D Vision Systems</topic><topic>3DCNNs</topic><topic>Computer architecture</topic><topic>Deep Learning</topic><topic>Image segmentation</topic><topic>Kernel</topic><topic>Shape</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>OrMahony, Niall</creatorcontrib><creatorcontrib>Campbell, Sean</creatorcontrib><creatorcontrib>Krpalkova, Lenka</creatorcontrib><creatorcontrib>Carvalho, Anderson</creatorcontrib><creatorcontrib>Velasco-Hernandez, Gustavo Adolfo</creatorcontrib><creatorcontrib>Riordan, Daniel</creatorcontrib><creatorcontrib>Walsh, Joseph</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>OrMahony, Niall</au><au>Campbell, Sean</au><au>Krpalkova, Lenka</au><au>Carvalho, Anderson</au><au>Velasco-Hernandez, Gustavo Adolfo</au><au>Riordan, Daniel</au><au>Walsh, Joseph</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Convolutional Neural Networks for 3D Vision System Data : A review</atitle><btitle>2018 12th International Conference on Sensing Technology (ICST)</btitle><stitle>ICSensT</stitle><date>2018-12</date><risdate>2018</risdate><spage>160</spage><epage>165</epage><pages>160-165</pages><eissn>2156-8073</eissn><eisbn>9781538651476</eisbn><eisbn>1538651475</eisbn><abstract>3D vision systems are becoming increasingly accessible and as such there has been a lot of progress in the design of 3D Convolutional Neural Networks (3D CNNs). This paper will provide a review of the significant enhancements which have been made in deep learning techniques for understanding data from 3D vision systems in the tasks of 3D object classification and 3D semantic segmentation. We compare the documented results the state-of-the-art architectures have achieved on benchmark datasets and outline the advantages of the different techniques which have been developed in a number of different categories of approaches including view-based, voxelbased and point-based architectures amongst others. We also give insights into common themes and trends in this very active field of research.</abstract><pub>IEEE</pub><doi>10.1109/ICSensT.2018.8603642</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2156-8073
ispartof 2018 12th International Conference on Sensing Technology (ICST), 2018, p.160-165
issn 2156-8073
language eng
recordid cdi_ieee_primary_8603642
source IEEE Xplore All Conference Series
subjects 3D Vision Systems
3DCNNs
Computer architecture
Deep Learning
Image segmentation
Kernel
Shape
Task analysis
Three-dimensional displays
Two dimensional displays
title Convolutional Neural Networks for 3D Vision System Data : A review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A05%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Convolutional%20Neural%20Networks%20for%203D%20Vision%20System%20Data%20:%20A%20review&rft.btitle=2018%2012th%20International%20Conference%20on%20Sensing%20Technology%20(ICST)&rft.au=OrMahony,%20Niall&rft.date=2018-12&rft.spage=160&rft.epage=165&rft.pages=160-165&rft.eissn=2156-8073&rft_id=info:doi/10.1109/ICSensT.2018.8603642&rft.eisbn=9781538651476&rft.eisbn_list=1538651475&rft_dat=%3Cieee_CHZPO%3E8603642%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-30831a61b28759f180378b369ff7af39aaf25d06f4b96b207861608f6774a2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8603642&rfr_iscdi=true