Loading…

Reduction of Communication Cost for Edge-Heavy Sensor using Divided CNN

Sensor networks allow us to collect data, such as camera images, over a wide area. Understanding the sensing area by aggregating and processing the data from multiple sensors is promising. Deep Learning (DL) is a powerful method for interpreting data. However, communication cost on the sensor networ...

Full description

Saved in:
Bibliographic Details
Main Authors: Ikeda, Yoshihiro, Yanagisawa, Yutaka, Kishino, Yasue, Mizutani, Shin, Shirai, Yoshinari, Suyama, Takayuki, Matsumura, Kohei, Noma, Haruo
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 245
container_issue
container_start_page 244
container_title
container_volume
creator Ikeda, Yoshihiro
Yanagisawa, Yutaka
Kishino, Yasue
Mizutani, Shin
Shirai, Yoshinari
Suyama, Takayuki
Matsumura, Kohei
Noma, Haruo
description Sensor networks allow us to collect data, such as camera images, over a wide area. Understanding the sensing area by aggregating and processing the data from multiple sensors is promising. Deep Learning (DL) is a powerful method for interpreting data. However, communication cost on the sensor network and computational cost on the server are two substantial problems of aggregating and processing data from multiple sensors. We therefore propose divided processing of the DL between a server and a powerful Edge-Heavy Sensor (EHS). In our study, we reduced transmission data to twelve times lower than the amount of raw input data while maintaining a 4.5% decrease in the DL's recognition accuracy.
doi_str_mv 10.1109/RTCSA.2018.00042
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8607260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8607260</ieee_id><sourcerecordid>8607260</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9f257334fe2667a3d731ab7d307ecd9e0adf81bcc4fbbab58f309487684d56b93</originalsourceid><addsrcrecordid>eNotjE9LwzAcQKMgOGbvgpd8gdb8afJLjiPOTRgTtnkeSZOMiG2laQf79g719ODxeAg9UlJRSvTz7mD2i4oRqipCSM1uUKFBUcGVBBBa36IZ40yUlBN6j4qcP68ZpwCasRla7YKfmjH1He4jNn3bTl1q7K8wfR5x7Ae89KdQroM9X_A-dPlqppy6E35J5-SDx2a7fUB30X7lUPxzjj5elwezLjfvqzez2JSJghhLHZkAzusYmJRguQdOrQPPCYTG60Csj4q6pqmjc9YJFTnRtQKpai-k03yOnv6-KYRw_B5Sa4fLUUkCTBL-A2JITBo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reduction of Communication Cost for Edge-Heavy Sensor using Divided CNN</title><source>IEEE Xplore All Conference Series</source><creator>Ikeda, Yoshihiro ; Yanagisawa, Yutaka ; Kishino, Yasue ; Mizutani, Shin ; Shirai, Yoshinari ; Suyama, Takayuki ; Matsumura, Kohei ; Noma, Haruo</creator><creatorcontrib>Ikeda, Yoshihiro ; Yanagisawa, Yutaka ; Kishino, Yasue ; Mizutani, Shin ; Shirai, Yoshinari ; Suyama, Takayuki ; Matsumura, Kohei ; Noma, Haruo</creatorcontrib><description>Sensor networks allow us to collect data, such as camera images, over a wide area. Understanding the sensing area by aggregating and processing the data from multiple sensors is promising. Deep Learning (DL) is a powerful method for interpreting data. However, communication cost on the sensor network and computational cost on the server are two substantial problems of aggregating and processing data from multiple sensors. We therefore propose divided processing of the DL between a server and a powerful Edge-Heavy Sensor (EHS). In our study, we reduced transmission data to twelve times lower than the amount of raw input data while maintaining a 4.5% decrease in the DL's recognition accuracy.</description><identifier>EISSN: 2325-1301</identifier><identifier>EISBN: 9781538677599</identifier><identifier>EISBN: 1538677598</identifier><identifier>DOI: 10.1109/RTCSA.2018.00042</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Computational efficiency ; Deep learning ; Edge Computing ; Image coding ; Information science ; Sensor Network ; Sensors ; Servers</subject><ispartof>2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2018, p.244-245</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8607260$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8607260$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ikeda, Yoshihiro</creatorcontrib><creatorcontrib>Yanagisawa, Yutaka</creatorcontrib><creatorcontrib>Kishino, Yasue</creatorcontrib><creatorcontrib>Mizutani, Shin</creatorcontrib><creatorcontrib>Shirai, Yoshinari</creatorcontrib><creatorcontrib>Suyama, Takayuki</creatorcontrib><creatorcontrib>Matsumura, Kohei</creatorcontrib><creatorcontrib>Noma, Haruo</creatorcontrib><title>Reduction of Communication Cost for Edge-Heavy Sensor using Divided CNN</title><title>2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA)</title><addtitle>RTCSA</addtitle><description>Sensor networks allow us to collect data, such as camera images, over a wide area. Understanding the sensing area by aggregating and processing the data from multiple sensors is promising. Deep Learning (DL) is a powerful method for interpreting data. However, communication cost on the sensor network and computational cost on the server are two substantial problems of aggregating and processing data from multiple sensors. We therefore propose divided processing of the DL between a server and a powerful Edge-Heavy Sensor (EHS). In our study, we reduced transmission data to twelve times lower than the amount of raw input data while maintaining a 4.5% decrease in the DL's recognition accuracy.</description><subject>Cameras</subject><subject>Computational efficiency</subject><subject>Deep learning</subject><subject>Edge Computing</subject><subject>Image coding</subject><subject>Information science</subject><subject>Sensor Network</subject><subject>Sensors</subject><subject>Servers</subject><issn>2325-1301</issn><isbn>9781538677599</isbn><isbn>1538677598</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE9LwzAcQKMgOGbvgpd8gdb8afJLjiPOTRgTtnkeSZOMiG2laQf79g719ODxeAg9UlJRSvTz7mD2i4oRqipCSM1uUKFBUcGVBBBa36IZ40yUlBN6j4qcP68ZpwCasRla7YKfmjH1He4jNn3bTl1q7K8wfR5x7Ae89KdQroM9X_A-dPlqppy6E35J5-SDx2a7fUB30X7lUPxzjj5elwezLjfvqzez2JSJghhLHZkAzusYmJRguQdOrQPPCYTG60Csj4q6pqmjc9YJFTnRtQKpai-k03yOnv6-KYRw_B5Sa4fLUUkCTBL-A2JITBo</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Ikeda, Yoshihiro</creator><creator>Yanagisawa, Yutaka</creator><creator>Kishino, Yasue</creator><creator>Mizutani, Shin</creator><creator>Shirai, Yoshinari</creator><creator>Suyama, Takayuki</creator><creator>Matsumura, Kohei</creator><creator>Noma, Haruo</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201808</creationdate><title>Reduction of Communication Cost for Edge-Heavy Sensor using Divided CNN</title><author>Ikeda, Yoshihiro ; Yanagisawa, Yutaka ; Kishino, Yasue ; Mizutani, Shin ; Shirai, Yoshinari ; Suyama, Takayuki ; Matsumura, Kohei ; Noma, Haruo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9f257334fe2667a3d731ab7d307ecd9e0adf81bcc4fbbab58f309487684d56b93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cameras</topic><topic>Computational efficiency</topic><topic>Deep learning</topic><topic>Edge Computing</topic><topic>Image coding</topic><topic>Information science</topic><topic>Sensor Network</topic><topic>Sensors</topic><topic>Servers</topic><toplevel>online_resources</toplevel><creatorcontrib>Ikeda, Yoshihiro</creatorcontrib><creatorcontrib>Yanagisawa, Yutaka</creatorcontrib><creatorcontrib>Kishino, Yasue</creatorcontrib><creatorcontrib>Mizutani, Shin</creatorcontrib><creatorcontrib>Shirai, Yoshinari</creatorcontrib><creatorcontrib>Suyama, Takayuki</creatorcontrib><creatorcontrib>Matsumura, Kohei</creatorcontrib><creatorcontrib>Noma, Haruo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ikeda, Yoshihiro</au><au>Yanagisawa, Yutaka</au><au>Kishino, Yasue</au><au>Mizutani, Shin</au><au>Shirai, Yoshinari</au><au>Suyama, Takayuki</au><au>Matsumura, Kohei</au><au>Noma, Haruo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reduction of Communication Cost for Edge-Heavy Sensor using Divided CNN</atitle><btitle>2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA)</btitle><stitle>RTCSA</stitle><date>2018-08</date><risdate>2018</risdate><spage>244</spage><epage>245</epage><pages>244-245</pages><eissn>2325-1301</eissn><eisbn>9781538677599</eisbn><eisbn>1538677598</eisbn><coden>IEEPAD</coden><abstract>Sensor networks allow us to collect data, such as camera images, over a wide area. Understanding the sensing area by aggregating and processing the data from multiple sensors is promising. Deep Learning (DL) is a powerful method for interpreting data. However, communication cost on the sensor network and computational cost on the server are two substantial problems of aggregating and processing data from multiple sensors. We therefore propose divided processing of the DL between a server and a powerful Edge-Heavy Sensor (EHS). In our study, we reduced transmission data to twelve times lower than the amount of raw input data while maintaining a 4.5% decrease in the DL's recognition accuracy.</abstract><pub>IEEE</pub><doi>10.1109/RTCSA.2018.00042</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2325-1301
ispartof 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2018, p.244-245
issn 2325-1301
language eng
recordid cdi_ieee_primary_8607260
source IEEE Xplore All Conference Series
subjects Cameras
Computational efficiency
Deep learning
Edge Computing
Image coding
Information science
Sensor Network
Sensors
Servers
title Reduction of Communication Cost for Edge-Heavy Sensor using Divided CNN
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reduction%20of%20Communication%20Cost%20for%20Edge-Heavy%20Sensor%20using%20Divided%20CNN&rft.btitle=2018%20IEEE%2024th%20International%20Conference%20on%20Embedded%20and%20Real-Time%20Computing%20Systems%20and%20Applications%20(RTCSA)&rft.au=Ikeda,%20Yoshihiro&rft.date=2018-08&rft.spage=244&rft.epage=245&rft.pages=244-245&rft.eissn=2325-1301&rft.coden=IEEPAD&rft_id=info:doi/10.1109/RTCSA.2018.00042&rft.eisbn=9781538677599&rft.eisbn_list=1538677598&rft_dat=%3Cieee_CHZPO%3E8607260%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9f257334fe2667a3d731ab7d307ecd9e0adf81bcc4fbbab58f309487684d56b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8607260&rfr_iscdi=true