Loading…
Community Detection and Growth Potential Prediction Using the Stochastic Block Model and the Long Short-term Memory from Patent Citation Networks
Scoring patent documents is very useful for technology management. However, conventional methods are based on static models and, thus, do not reflect the growth potential of the technology cluster of the patent. Because even if the cluster of a patent has no hope of growing, we recognize the patent...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1888 |
container_issue | |
container_start_page | 1884 |
container_title | |
container_volume | |
creator | Nakai, Kensei Nonaka, Hirofumi Hentona, Asahi Kanai, Yuki Sakumoto, Takeshi Kataoka, Shotaro Carreon, Elisa Claire Aleman Hiraoka, Toru |
description | Scoring patent documents is very useful for technology management. However, conventional methods are based on static models and, thus, do not reflect the growth potential of the technology cluster of the patent. Because even if the cluster of a patent has no hope of growing, we recognize the patent is important if PageRank or other ranking score is high. Therefore, there arises a necessity of developing citation network clustering and prediction of future citations. In our research, clustering of patent citation networks by Stochastic Block Model was done with the aim of enabling corporate managers and investors to evaluate the scale and life cycle of technology. As a result, we confirmed nested SBM is appropriate for graph clustering of patent citation networks. Also, a high MAPE value was obtained and the direction accuracy achieved a value greater than 50% when predicting growth potential for each cluster by using LSTM. |
doi_str_mv | 10.1109/IEEM.2018.8607487 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8607487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8607487</ieee_id><sourcerecordid>8607487</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9640169be8074598eb9897d59161a5881f9b7ee9c716bba5cbbd272e2d198b803</originalsourceid><addsrcrecordid>eNotkM9OAjEYxKuJiQR5AOOlL7DYr8v2z1FXRBJQEiTxRtrdD7eyuzXdGsJj-MYCcpjMYSa_ZIaQW2BDAKbvp-PxfMgZqKESTI6UvCADLRVkqRJCHnRJehwymaSCf1yTQdd9McaAK8G16JHf3DfNT-vinj5hxCI631LTlnQS_C5WdOEjttGZmi4Clu4_X3Wu_aSxQrqMvqhMF11BH2tfbOncl1ifAMd45g-9ZeVDTCKGhs6x8WFPN8E3dGGOZJq7aE7QV4w7H7bdDbnamLrDwdn7ZPU8fs9fktnbZJo_zBIHMouJFiMGQltUh9WZVmi10rLMNAgwmVKw0VYi6kKCsNZkhbUllxx5CVpZxdI-ufvnOkRcfwfXmLBfn09M_wD94WfT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Community Detection and Growth Potential Prediction Using the Stochastic Block Model and the Long Short-term Memory from Patent Citation Networks</title><source>IEEE Xplore All Conference Series</source><creator>Nakai, Kensei ; Nonaka, Hirofumi ; Hentona, Asahi ; Kanai, Yuki ; Sakumoto, Takeshi ; Kataoka, Shotaro ; Carreon, Elisa Claire Aleman ; Hiraoka, Toru</creator><creatorcontrib>Nakai, Kensei ; Nonaka, Hirofumi ; Hentona, Asahi ; Kanai, Yuki ; Sakumoto, Takeshi ; Kataoka, Shotaro ; Carreon, Elisa Claire Aleman ; Hiraoka, Toru</creatorcontrib><description>Scoring patent documents is very useful for technology management. However, conventional methods are based on static models and, thus, do not reflect the growth potential of the technology cluster of the patent. Because even if the cluster of a patent has no hope of growing, we recognize the patent is important if PageRank or other ranking score is high. Therefore, there arises a necessity of developing citation network clustering and prediction of future citations. In our research, clustering of patent citation networks by Stochastic Block Model was done with the aim of enabling corporate managers and investors to evaluate the scale and life cycle of technology. As a result, we confirmed nested SBM is appropriate for graph clustering of patent citation networks. Also, a high MAPE value was obtained and the direction accuracy achieved a value greater than 50% when predicting growth potential for each cluster by using LSTM.</description><identifier>EISSN: 2157-362X</identifier><identifier>EISBN: 9781538667866</identifier><identifier>EISBN: 153866786X</identifier><identifier>DOI: 10.1109/IEEM.2018.8607487</identifier><language>eng</language><publisher>IEEE</publisher><subject>Games ; Industries ; Long Short-Term Memory ; Modeling ; Patent scoring ; Stochastic Block Model ; Stochastic processes ; Technology management</subject><ispartof>2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2018, p.1884-1888</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8607487$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8607487$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nakai, Kensei</creatorcontrib><creatorcontrib>Nonaka, Hirofumi</creatorcontrib><creatorcontrib>Hentona, Asahi</creatorcontrib><creatorcontrib>Kanai, Yuki</creatorcontrib><creatorcontrib>Sakumoto, Takeshi</creatorcontrib><creatorcontrib>Kataoka, Shotaro</creatorcontrib><creatorcontrib>Carreon, Elisa Claire Aleman</creatorcontrib><creatorcontrib>Hiraoka, Toru</creatorcontrib><title>Community Detection and Growth Potential Prediction Using the Stochastic Block Model and the Long Short-term Memory from Patent Citation Networks</title><title>2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)</title><addtitle>IEEM</addtitle><description>Scoring patent documents is very useful for technology management. However, conventional methods are based on static models and, thus, do not reflect the growth potential of the technology cluster of the patent. Because even if the cluster of a patent has no hope of growing, we recognize the patent is important if PageRank or other ranking score is high. Therefore, there arises a necessity of developing citation network clustering and prediction of future citations. In our research, clustering of patent citation networks by Stochastic Block Model was done with the aim of enabling corporate managers and investors to evaluate the scale and life cycle of technology. As a result, we confirmed nested SBM is appropriate for graph clustering of patent citation networks. Also, a high MAPE value was obtained and the direction accuracy achieved a value greater than 50% when predicting growth potential for each cluster by using LSTM.</description><subject>Games</subject><subject>Industries</subject><subject>Long Short-Term Memory</subject><subject>Modeling</subject><subject>Patent scoring</subject><subject>Stochastic Block Model</subject><subject>Stochastic processes</subject><subject>Technology management</subject><issn>2157-362X</issn><isbn>9781538667866</isbn><isbn>153866786X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM9OAjEYxKuJiQR5AOOlL7DYr8v2z1FXRBJQEiTxRtrdD7eyuzXdGsJj-MYCcpjMYSa_ZIaQW2BDAKbvp-PxfMgZqKESTI6UvCADLRVkqRJCHnRJehwymaSCf1yTQdd9McaAK8G16JHf3DfNT-vinj5hxCI631LTlnQS_C5WdOEjttGZmi4Clu4_X3Wu_aSxQrqMvqhMF11BH2tfbOncl1ifAMd45g-9ZeVDTCKGhs6x8WFPN8E3dGGOZJq7aE7QV4w7H7bdDbnamLrDwdn7ZPU8fs9fktnbZJo_zBIHMouJFiMGQltUh9WZVmi10rLMNAgwmVKw0VYi6kKCsNZkhbUllxx5CVpZxdI-ufvnOkRcfwfXmLBfn09M_wD94WfT</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Nakai, Kensei</creator><creator>Nonaka, Hirofumi</creator><creator>Hentona, Asahi</creator><creator>Kanai, Yuki</creator><creator>Sakumoto, Takeshi</creator><creator>Kataoka, Shotaro</creator><creator>Carreon, Elisa Claire Aleman</creator><creator>Hiraoka, Toru</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201812</creationdate><title>Community Detection and Growth Potential Prediction Using the Stochastic Block Model and the Long Short-term Memory from Patent Citation Networks</title><author>Nakai, Kensei ; Nonaka, Hirofumi ; Hentona, Asahi ; Kanai, Yuki ; Sakumoto, Takeshi ; Kataoka, Shotaro ; Carreon, Elisa Claire Aleman ; Hiraoka, Toru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9640169be8074598eb9897d59161a5881f9b7ee9c716bba5cbbd272e2d198b803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Games</topic><topic>Industries</topic><topic>Long Short-Term Memory</topic><topic>Modeling</topic><topic>Patent scoring</topic><topic>Stochastic Block Model</topic><topic>Stochastic processes</topic><topic>Technology management</topic><toplevel>online_resources</toplevel><creatorcontrib>Nakai, Kensei</creatorcontrib><creatorcontrib>Nonaka, Hirofumi</creatorcontrib><creatorcontrib>Hentona, Asahi</creatorcontrib><creatorcontrib>Kanai, Yuki</creatorcontrib><creatorcontrib>Sakumoto, Takeshi</creatorcontrib><creatorcontrib>Kataoka, Shotaro</creatorcontrib><creatorcontrib>Carreon, Elisa Claire Aleman</creatorcontrib><creatorcontrib>Hiraoka, Toru</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nakai, Kensei</au><au>Nonaka, Hirofumi</au><au>Hentona, Asahi</au><au>Kanai, Yuki</au><au>Sakumoto, Takeshi</au><au>Kataoka, Shotaro</au><au>Carreon, Elisa Claire Aleman</au><au>Hiraoka, Toru</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Community Detection and Growth Potential Prediction Using the Stochastic Block Model and the Long Short-term Memory from Patent Citation Networks</atitle><btitle>2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)</btitle><stitle>IEEM</stitle><date>2018-12</date><risdate>2018</risdate><spage>1884</spage><epage>1888</epage><pages>1884-1888</pages><eissn>2157-362X</eissn><eisbn>9781538667866</eisbn><eisbn>153866786X</eisbn><abstract>Scoring patent documents is very useful for technology management. However, conventional methods are based on static models and, thus, do not reflect the growth potential of the technology cluster of the patent. Because even if the cluster of a patent has no hope of growing, we recognize the patent is important if PageRank or other ranking score is high. Therefore, there arises a necessity of developing citation network clustering and prediction of future citations. In our research, clustering of patent citation networks by Stochastic Block Model was done with the aim of enabling corporate managers and investors to evaluate the scale and life cycle of technology. As a result, we confirmed nested SBM is appropriate for graph clustering of patent citation networks. Also, a high MAPE value was obtained and the direction accuracy achieved a value greater than 50% when predicting growth potential for each cluster by using LSTM.</abstract><pub>IEEE</pub><doi>10.1109/IEEM.2018.8607487</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2157-362X |
ispartof | 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2018, p.1884-1888 |
issn | 2157-362X |
language | eng |
recordid | cdi_ieee_primary_8607487 |
source | IEEE Xplore All Conference Series |
subjects | Games Industries Long Short-Term Memory Modeling Patent scoring Stochastic Block Model Stochastic processes Technology management |
title | Community Detection and Growth Potential Prediction Using the Stochastic Block Model and the Long Short-term Memory from Patent Citation Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Community%20Detection%20and%20Growth%20Potential%20Prediction%20Using%20the%20Stochastic%20Block%20Model%20and%20the%20Long%20Short-term%20Memory%20from%20Patent%20Citation%20Networks&rft.btitle=2018%20IEEE%20International%20Conference%20on%20Industrial%20Engineering%20and%20Engineering%20Management%20(IEEM)&rft.au=Nakai,%20Kensei&rft.date=2018-12&rft.spage=1884&rft.epage=1888&rft.pages=1884-1888&rft.eissn=2157-362X&rft_id=info:doi/10.1109/IEEM.2018.8607487&rft.eisbn=9781538667866&rft.eisbn_list=153866786X&rft_dat=%3Cieee_CHZPO%3E8607487%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9640169be8074598eb9897d59161a5881f9b7ee9c716bba5cbbd272e2d198b803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8607487&rfr_iscdi=true |