Loading…

Community Detection and Growth Potential Prediction Using the Stochastic Block Model and the Long Short-term Memory from Patent Citation Networks

Scoring patent documents is very useful for technology management. However, conventional methods are based on static models and, thus, do not reflect the growth potential of the technology cluster of the patent. Because even if the cluster of a patent has no hope of growing, we recognize the patent...

Full description

Saved in:
Bibliographic Details
Main Authors: Nakai, Kensei, Nonaka, Hirofumi, Hentona, Asahi, Kanai, Yuki, Sakumoto, Takeshi, Kataoka, Shotaro, Carreon, Elisa Claire Aleman, Hiraoka, Toru
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1888
container_issue
container_start_page 1884
container_title
container_volume
creator Nakai, Kensei
Nonaka, Hirofumi
Hentona, Asahi
Kanai, Yuki
Sakumoto, Takeshi
Kataoka, Shotaro
Carreon, Elisa Claire Aleman
Hiraoka, Toru
description Scoring patent documents is very useful for technology management. However, conventional methods are based on static models and, thus, do not reflect the growth potential of the technology cluster of the patent. Because even if the cluster of a patent has no hope of growing, we recognize the patent is important if PageRank or other ranking score is high. Therefore, there arises a necessity of developing citation network clustering and prediction of future citations. In our research, clustering of patent citation networks by Stochastic Block Model was done with the aim of enabling corporate managers and investors to evaluate the scale and life cycle of technology. As a result, we confirmed nested SBM is appropriate for graph clustering of patent citation networks. Also, a high MAPE value was obtained and the direction accuracy achieved a value greater than 50% when predicting growth potential for each cluster by using LSTM.
doi_str_mv 10.1109/IEEM.2018.8607487
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8607487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8607487</ieee_id><sourcerecordid>8607487</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9640169be8074598eb9897d59161a5881f9b7ee9c716bba5cbbd272e2d198b803</originalsourceid><addsrcrecordid>eNotkM9OAjEYxKuJiQR5AOOlL7DYr8v2z1FXRBJQEiTxRtrdD7eyuzXdGsJj-MYCcpjMYSa_ZIaQW2BDAKbvp-PxfMgZqKESTI6UvCADLRVkqRJCHnRJehwymaSCf1yTQdd9McaAK8G16JHf3DfNT-vinj5hxCI631LTlnQS_C5WdOEjttGZmi4Clu4_X3Wu_aSxQrqMvqhMF11BH2tfbOncl1ifAMd45g-9ZeVDTCKGhs6x8WFPN8E3dGGOZJq7aE7QV4w7H7bdDbnamLrDwdn7ZPU8fs9fktnbZJo_zBIHMouJFiMGQltUh9WZVmi10rLMNAgwmVKw0VYi6kKCsNZkhbUllxx5CVpZxdI-ufvnOkRcfwfXmLBfn09M_wD94WfT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Community Detection and Growth Potential Prediction Using the Stochastic Block Model and the Long Short-term Memory from Patent Citation Networks</title><source>IEEE Xplore All Conference Series</source><creator>Nakai, Kensei ; Nonaka, Hirofumi ; Hentona, Asahi ; Kanai, Yuki ; Sakumoto, Takeshi ; Kataoka, Shotaro ; Carreon, Elisa Claire Aleman ; Hiraoka, Toru</creator><creatorcontrib>Nakai, Kensei ; Nonaka, Hirofumi ; Hentona, Asahi ; Kanai, Yuki ; Sakumoto, Takeshi ; Kataoka, Shotaro ; Carreon, Elisa Claire Aleman ; Hiraoka, Toru</creatorcontrib><description>Scoring patent documents is very useful for technology management. However, conventional methods are based on static models and, thus, do not reflect the growth potential of the technology cluster of the patent. Because even if the cluster of a patent has no hope of growing, we recognize the patent is important if PageRank or other ranking score is high. Therefore, there arises a necessity of developing citation network clustering and prediction of future citations. In our research, clustering of patent citation networks by Stochastic Block Model was done with the aim of enabling corporate managers and investors to evaluate the scale and life cycle of technology. As a result, we confirmed nested SBM is appropriate for graph clustering of patent citation networks. Also, a high MAPE value was obtained and the direction accuracy achieved a value greater than 50% when predicting growth potential for each cluster by using LSTM.</description><identifier>EISSN: 2157-362X</identifier><identifier>EISBN: 9781538667866</identifier><identifier>EISBN: 153866786X</identifier><identifier>DOI: 10.1109/IEEM.2018.8607487</identifier><language>eng</language><publisher>IEEE</publisher><subject>Games ; Industries ; Long Short-Term Memory ; Modeling ; Patent scoring ; Stochastic Block Model ; Stochastic processes ; Technology management</subject><ispartof>2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2018, p.1884-1888</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8607487$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8607487$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nakai, Kensei</creatorcontrib><creatorcontrib>Nonaka, Hirofumi</creatorcontrib><creatorcontrib>Hentona, Asahi</creatorcontrib><creatorcontrib>Kanai, Yuki</creatorcontrib><creatorcontrib>Sakumoto, Takeshi</creatorcontrib><creatorcontrib>Kataoka, Shotaro</creatorcontrib><creatorcontrib>Carreon, Elisa Claire Aleman</creatorcontrib><creatorcontrib>Hiraoka, Toru</creatorcontrib><title>Community Detection and Growth Potential Prediction Using the Stochastic Block Model and the Long Short-term Memory from Patent Citation Networks</title><title>2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)</title><addtitle>IEEM</addtitle><description>Scoring patent documents is very useful for technology management. However, conventional methods are based on static models and, thus, do not reflect the growth potential of the technology cluster of the patent. Because even if the cluster of a patent has no hope of growing, we recognize the patent is important if PageRank or other ranking score is high. Therefore, there arises a necessity of developing citation network clustering and prediction of future citations. In our research, clustering of patent citation networks by Stochastic Block Model was done with the aim of enabling corporate managers and investors to evaluate the scale and life cycle of technology. As a result, we confirmed nested SBM is appropriate for graph clustering of patent citation networks. Also, a high MAPE value was obtained and the direction accuracy achieved a value greater than 50% when predicting growth potential for each cluster by using LSTM.</description><subject>Games</subject><subject>Industries</subject><subject>Long Short-Term Memory</subject><subject>Modeling</subject><subject>Patent scoring</subject><subject>Stochastic Block Model</subject><subject>Stochastic processes</subject><subject>Technology management</subject><issn>2157-362X</issn><isbn>9781538667866</isbn><isbn>153866786X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM9OAjEYxKuJiQR5AOOlL7DYr8v2z1FXRBJQEiTxRtrdD7eyuzXdGsJj-MYCcpjMYSa_ZIaQW2BDAKbvp-PxfMgZqKESTI6UvCADLRVkqRJCHnRJehwymaSCf1yTQdd9McaAK8G16JHf3DfNT-vinj5hxCI631LTlnQS_C5WdOEjttGZmi4Clu4_X3Wu_aSxQrqMvqhMF11BH2tfbOncl1ifAMd45g-9ZeVDTCKGhs6x8WFPN8E3dGGOZJq7aE7QV4w7H7bdDbnamLrDwdn7ZPU8fs9fktnbZJo_zBIHMouJFiMGQltUh9WZVmi10rLMNAgwmVKw0VYi6kKCsNZkhbUllxx5CVpZxdI-ufvnOkRcfwfXmLBfn09M_wD94WfT</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Nakai, Kensei</creator><creator>Nonaka, Hirofumi</creator><creator>Hentona, Asahi</creator><creator>Kanai, Yuki</creator><creator>Sakumoto, Takeshi</creator><creator>Kataoka, Shotaro</creator><creator>Carreon, Elisa Claire Aleman</creator><creator>Hiraoka, Toru</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201812</creationdate><title>Community Detection and Growth Potential Prediction Using the Stochastic Block Model and the Long Short-term Memory from Patent Citation Networks</title><author>Nakai, Kensei ; Nonaka, Hirofumi ; Hentona, Asahi ; Kanai, Yuki ; Sakumoto, Takeshi ; Kataoka, Shotaro ; Carreon, Elisa Claire Aleman ; Hiraoka, Toru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9640169be8074598eb9897d59161a5881f9b7ee9c716bba5cbbd272e2d198b803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Games</topic><topic>Industries</topic><topic>Long Short-Term Memory</topic><topic>Modeling</topic><topic>Patent scoring</topic><topic>Stochastic Block Model</topic><topic>Stochastic processes</topic><topic>Technology management</topic><toplevel>online_resources</toplevel><creatorcontrib>Nakai, Kensei</creatorcontrib><creatorcontrib>Nonaka, Hirofumi</creatorcontrib><creatorcontrib>Hentona, Asahi</creatorcontrib><creatorcontrib>Kanai, Yuki</creatorcontrib><creatorcontrib>Sakumoto, Takeshi</creatorcontrib><creatorcontrib>Kataoka, Shotaro</creatorcontrib><creatorcontrib>Carreon, Elisa Claire Aleman</creatorcontrib><creatorcontrib>Hiraoka, Toru</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nakai, Kensei</au><au>Nonaka, Hirofumi</au><au>Hentona, Asahi</au><au>Kanai, Yuki</au><au>Sakumoto, Takeshi</au><au>Kataoka, Shotaro</au><au>Carreon, Elisa Claire Aleman</au><au>Hiraoka, Toru</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Community Detection and Growth Potential Prediction Using the Stochastic Block Model and the Long Short-term Memory from Patent Citation Networks</atitle><btitle>2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)</btitle><stitle>IEEM</stitle><date>2018-12</date><risdate>2018</risdate><spage>1884</spage><epage>1888</epage><pages>1884-1888</pages><eissn>2157-362X</eissn><eisbn>9781538667866</eisbn><eisbn>153866786X</eisbn><abstract>Scoring patent documents is very useful for technology management. However, conventional methods are based on static models and, thus, do not reflect the growth potential of the technology cluster of the patent. Because even if the cluster of a patent has no hope of growing, we recognize the patent is important if PageRank or other ranking score is high. Therefore, there arises a necessity of developing citation network clustering and prediction of future citations. In our research, clustering of patent citation networks by Stochastic Block Model was done with the aim of enabling corporate managers and investors to evaluate the scale and life cycle of technology. As a result, we confirmed nested SBM is appropriate for graph clustering of patent citation networks. Also, a high MAPE value was obtained and the direction accuracy achieved a value greater than 50% when predicting growth potential for each cluster by using LSTM.</abstract><pub>IEEE</pub><doi>10.1109/IEEM.2018.8607487</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2157-362X
ispartof 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2018, p.1884-1888
issn 2157-362X
language eng
recordid cdi_ieee_primary_8607487
source IEEE Xplore All Conference Series
subjects Games
Industries
Long Short-Term Memory
Modeling
Patent scoring
Stochastic Block Model
Stochastic processes
Technology management
title Community Detection and Growth Potential Prediction Using the Stochastic Block Model and the Long Short-term Memory from Patent Citation Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Community%20Detection%20and%20Growth%20Potential%20Prediction%20Using%20the%20Stochastic%20Block%20Model%20and%20the%20Long%20Short-term%20Memory%20from%20Patent%20Citation%20Networks&rft.btitle=2018%20IEEE%20International%20Conference%20on%20Industrial%20Engineering%20and%20Engineering%20Management%20(IEEM)&rft.au=Nakai,%20Kensei&rft.date=2018-12&rft.spage=1884&rft.epage=1888&rft.pages=1884-1888&rft.eissn=2157-362X&rft_id=info:doi/10.1109/IEEM.2018.8607487&rft.eisbn=9781538667866&rft.eisbn_list=153866786X&rft_dat=%3Cieee_CHZPO%3E8607487%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9640169be8074598eb9897d59161a5881f9b7ee9c716bba5cbbd272e2d198b803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8607487&rfr_iscdi=true