Loading…
DCT-Tensor-Net for Solar Flares Detection on IRIS Data
Flares are an eruptive phenomenon observed on the sun, which are major protagonists in space weather and can cause adverse effects such as disruptions in communication, power grid failure and damage of satellites. Our method answers the importance of the time component in some scientific video obser...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Ullmann, Denis Voloshynovskiy, Slava Kleint, Lucia Krucker, Sam Melchior, Martin Huwyler, Cedric Panos, Brandon |
description | Flares are an eruptive phenomenon observed on the sun, which are major protagonists in space weather and can cause adverse effects such as disruptions in communication, power grid failure and damage of satellites. Our method answers the importance of the time component in some scientific video observations, especially for flare detection and the study is based on NASA's Interface Region Imaging Spectrograph (IRIS) observations of the sun since 2013, which consists of a very asymmetrical and unlabeled big data. For detecting and analyzing flares in our IRIS solar video observation data, we created a discrete cosine transform tool DCT- Tensor-Net which uses an empirically handcrafted harmonic representation of our video data. This is one of the first tools for detecting flares based on IRIS images. Our method reduces the false detections of flares by taking into consideration their specific local spatial and temporal patterns. |
doi_str_mv | 10.1109/EUVIP.2018.8611672 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8611672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8611672</ieee_id><sourcerecordid>8611672</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5b0a69cc1857612e9edcbf562d6405d605ecb1ae56dcccbca14ee2ececf62e053</originalsourceid><addsrcrecordid>eNotj8FKw0AURUdBsNT8gG7mBybOm2TezCwlaTVQVGzqtkxeXiBSG0my8e-ttHC5Z3M5cIW4B50C6PC42n1W76nR4FOPAOjMlUiC82Azj-iDC9diYXIHygfMbkUyTV9aa_jf6nwhsCxqVfNxGkb1yrPshlFuh0Mc5fpUPMmSZ6a5H47ylOqj2soyzvFO3HTxMHFy4VLs1qu6eFGbt-eqeNqoHpydlW10xEAE3joEw4FbajqLpsVc2xa1ZWogssWWiBqKkDMbJqYODWubLcXD2dsz8_5n7L_j-Lu_PM3-AMH9RnY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>DCT-Tensor-Net for Solar Flares Detection on IRIS Data</title><source>IEEE Xplore All Conference Series</source><creator>Ullmann, Denis ; Voloshynovskiy, Slava ; Kleint, Lucia ; Krucker, Sam ; Melchior, Martin ; Huwyler, Cedric ; Panos, Brandon</creator><creatorcontrib>Ullmann, Denis ; Voloshynovskiy, Slava ; Kleint, Lucia ; Krucker, Sam ; Melchior, Martin ; Huwyler, Cedric ; Panos, Brandon</creatorcontrib><description>Flares are an eruptive phenomenon observed on the sun, which are major protagonists in space weather and can cause adverse effects such as disruptions in communication, power grid failure and damage of satellites. Our method answers the importance of the time component in some scientific video observations, especially for flare detection and the study is based on NASA's Interface Region Imaging Spectrograph (IRIS) observations of the sun since 2013, which consists of a very asymmetrical and unlabeled big data. For detecting and analyzing flares in our IRIS solar video observation data, we created a discrete cosine transform tool DCT- Tensor-Net which uses an empirically handcrafted harmonic representation of our video data. This is one of the first tools for detecting flares based on IRIS images. Our method reduces the false detections of flares by taking into consideration their specific local spatial and temporal patterns.</description><identifier>EISSN: 2471-8963</identifier><identifier>EISBN: 9781538668979</identifier><identifier>EISBN: 1538668971</identifier><identifier>DOI: 10.1109/EUVIP.2018.8611672</identifier><language>eng</language><publisher>IEEE</publisher><subject>astrophysics ; big data applications ; computer aided analysis ; data analysis ; data preprocessing ; data processing ; detection algorithm ; Discrete cosine transforms ; feature extraction ; Frequency-domain analysis ; image texture analysis ; Iris ; Satellites ; scientific computing ; Sun</subject><ispartof>2018 7th European Workshop on Visual Information Processing (EUVIP), 2018, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8611672$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8611672$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ullmann, Denis</creatorcontrib><creatorcontrib>Voloshynovskiy, Slava</creatorcontrib><creatorcontrib>Kleint, Lucia</creatorcontrib><creatorcontrib>Krucker, Sam</creatorcontrib><creatorcontrib>Melchior, Martin</creatorcontrib><creatorcontrib>Huwyler, Cedric</creatorcontrib><creatorcontrib>Panos, Brandon</creatorcontrib><title>DCT-Tensor-Net for Solar Flares Detection on IRIS Data</title><title>2018 7th European Workshop on Visual Information Processing (EUVIP)</title><addtitle>EUVIP</addtitle><description>Flares are an eruptive phenomenon observed on the sun, which are major protagonists in space weather and can cause adverse effects such as disruptions in communication, power grid failure and damage of satellites. Our method answers the importance of the time component in some scientific video observations, especially for flare detection and the study is based on NASA's Interface Region Imaging Spectrograph (IRIS) observations of the sun since 2013, which consists of a very asymmetrical and unlabeled big data. For detecting and analyzing flares in our IRIS solar video observation data, we created a discrete cosine transform tool DCT- Tensor-Net which uses an empirically handcrafted harmonic representation of our video data. This is one of the first tools for detecting flares based on IRIS images. Our method reduces the false detections of flares by taking into consideration their specific local spatial and temporal patterns.</description><subject>astrophysics</subject><subject>big data applications</subject><subject>computer aided analysis</subject><subject>data analysis</subject><subject>data preprocessing</subject><subject>data processing</subject><subject>detection algorithm</subject><subject>Discrete cosine transforms</subject><subject>feature extraction</subject><subject>Frequency-domain analysis</subject><subject>image texture analysis</subject><subject>Iris</subject><subject>Satellites</subject><subject>scientific computing</subject><subject>Sun</subject><issn>2471-8963</issn><isbn>9781538668979</isbn><isbn>1538668971</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8FKw0AURUdBsNT8gG7mBybOm2TezCwlaTVQVGzqtkxeXiBSG0my8e-ttHC5Z3M5cIW4B50C6PC42n1W76nR4FOPAOjMlUiC82Azj-iDC9diYXIHygfMbkUyTV9aa_jf6nwhsCxqVfNxGkb1yrPshlFuh0Mc5fpUPMmSZ6a5H47ylOqj2soyzvFO3HTxMHFy4VLs1qu6eFGbt-eqeNqoHpydlW10xEAE3joEw4FbajqLpsVc2xa1ZWogssWWiBqKkDMbJqYODWubLcXD2dsz8_5n7L_j-Lu_PM3-AMH9RnY</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Ullmann, Denis</creator><creator>Voloshynovskiy, Slava</creator><creator>Kleint, Lucia</creator><creator>Krucker, Sam</creator><creator>Melchior, Martin</creator><creator>Huwyler, Cedric</creator><creator>Panos, Brandon</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201811</creationdate><title>DCT-Tensor-Net for Solar Flares Detection on IRIS Data</title><author>Ullmann, Denis ; Voloshynovskiy, Slava ; Kleint, Lucia ; Krucker, Sam ; Melchior, Martin ; Huwyler, Cedric ; Panos, Brandon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5b0a69cc1857612e9edcbf562d6405d605ecb1ae56dcccbca14ee2ececf62e053</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>astrophysics</topic><topic>big data applications</topic><topic>computer aided analysis</topic><topic>data analysis</topic><topic>data preprocessing</topic><topic>data processing</topic><topic>detection algorithm</topic><topic>Discrete cosine transforms</topic><topic>feature extraction</topic><topic>Frequency-domain analysis</topic><topic>image texture analysis</topic><topic>Iris</topic><topic>Satellites</topic><topic>scientific computing</topic><topic>Sun</topic><toplevel>online_resources</toplevel><creatorcontrib>Ullmann, Denis</creatorcontrib><creatorcontrib>Voloshynovskiy, Slava</creatorcontrib><creatorcontrib>Kleint, Lucia</creatorcontrib><creatorcontrib>Krucker, Sam</creatorcontrib><creatorcontrib>Melchior, Martin</creatorcontrib><creatorcontrib>Huwyler, Cedric</creatorcontrib><creatorcontrib>Panos, Brandon</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ullmann, Denis</au><au>Voloshynovskiy, Slava</au><au>Kleint, Lucia</au><au>Krucker, Sam</au><au>Melchior, Martin</au><au>Huwyler, Cedric</au><au>Panos, Brandon</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>DCT-Tensor-Net for Solar Flares Detection on IRIS Data</atitle><btitle>2018 7th European Workshop on Visual Information Processing (EUVIP)</btitle><stitle>EUVIP</stitle><date>2018-11</date><risdate>2018</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2471-8963</eissn><eisbn>9781538668979</eisbn><eisbn>1538668971</eisbn><abstract>Flares are an eruptive phenomenon observed on the sun, which are major protagonists in space weather and can cause adverse effects such as disruptions in communication, power grid failure and damage of satellites. Our method answers the importance of the time component in some scientific video observations, especially for flare detection and the study is based on NASA's Interface Region Imaging Spectrograph (IRIS) observations of the sun since 2013, which consists of a very asymmetrical and unlabeled big data. For detecting and analyzing flares in our IRIS solar video observation data, we created a discrete cosine transform tool DCT- Tensor-Net which uses an empirically handcrafted harmonic representation of our video data. This is one of the first tools for detecting flares based on IRIS images. Our method reduces the false detections of flares by taking into consideration their specific local spatial and temporal patterns.</abstract><pub>IEEE</pub><doi>10.1109/EUVIP.2018.8611672</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2471-8963 |
ispartof | 2018 7th European Workshop on Visual Information Processing (EUVIP), 2018, p.1-6 |
issn | 2471-8963 |
language | eng |
recordid | cdi_ieee_primary_8611672 |
source | IEEE Xplore All Conference Series |
subjects | astrophysics big data applications computer aided analysis data analysis data preprocessing data processing detection algorithm Discrete cosine transforms feature extraction Frequency-domain analysis image texture analysis Iris Satellites scientific computing Sun |
title | DCT-Tensor-Net for Solar Flares Detection on IRIS Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=DCT-Tensor-Net%20for%20Solar%20Flares%20Detection%20on%20IRIS%20Data&rft.btitle=2018%207th%20European%20Workshop%20on%20Visual%20Information%20Processing%20(EUVIP)&rft.au=Ullmann,%20Denis&rft.date=2018-11&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2471-8963&rft_id=info:doi/10.1109/EUVIP.2018.8611672&rft.eisbn=9781538668979&rft.eisbn_list=1538668971&rft_dat=%3Cieee_CHZPO%3E8611672%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5b0a69cc1857612e9edcbf562d6405d605ecb1ae56dcccbca14ee2ececf62e053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8611672&rfr_iscdi=true |