Loading…

DCT-Tensor-Net for Solar Flares Detection on IRIS Data

Flares are an eruptive phenomenon observed on the sun, which are major protagonists in space weather and can cause adverse effects such as disruptions in communication, power grid failure and damage of satellites. Our method answers the importance of the time component in some scientific video obser...

Full description

Saved in:
Bibliographic Details
Main Authors: Ullmann, Denis, Voloshynovskiy, Slava, Kleint, Lucia, Krucker, Sam, Melchior, Martin, Huwyler, Cedric, Panos, Brandon
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Ullmann, Denis
Voloshynovskiy, Slava
Kleint, Lucia
Krucker, Sam
Melchior, Martin
Huwyler, Cedric
Panos, Brandon
description Flares are an eruptive phenomenon observed on the sun, which are major protagonists in space weather and can cause adverse effects such as disruptions in communication, power grid failure and damage of satellites. Our method answers the importance of the time component in some scientific video observations, especially for flare detection and the study is based on NASA's Interface Region Imaging Spectrograph (IRIS) observations of the sun since 2013, which consists of a very asymmetrical and unlabeled big data. For detecting and analyzing flares in our IRIS solar video observation data, we created a discrete cosine transform tool DCT- Tensor-Net which uses an empirically handcrafted harmonic representation of our video data. This is one of the first tools for detecting flares based on IRIS images. Our method reduces the false detections of flares by taking into consideration their specific local spatial and temporal patterns.
doi_str_mv 10.1109/EUVIP.2018.8611672
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8611672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8611672</ieee_id><sourcerecordid>8611672</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5b0a69cc1857612e9edcbf562d6405d605ecb1ae56dcccbca14ee2ececf62e053</originalsourceid><addsrcrecordid>eNotj8FKw0AURUdBsNT8gG7mBybOm2TezCwlaTVQVGzqtkxeXiBSG0my8e-ttHC5Z3M5cIW4B50C6PC42n1W76nR4FOPAOjMlUiC82Azj-iDC9diYXIHygfMbkUyTV9aa_jf6nwhsCxqVfNxGkb1yrPshlFuh0Mc5fpUPMmSZ6a5H47ylOqj2soyzvFO3HTxMHFy4VLs1qu6eFGbt-eqeNqoHpydlW10xEAE3joEw4FbajqLpsVc2xa1ZWogssWWiBqKkDMbJqYODWubLcXD2dsz8_5n7L_j-Lu_PM3-AMH9RnY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>DCT-Tensor-Net for Solar Flares Detection on IRIS Data</title><source>IEEE Xplore All Conference Series</source><creator>Ullmann, Denis ; Voloshynovskiy, Slava ; Kleint, Lucia ; Krucker, Sam ; Melchior, Martin ; Huwyler, Cedric ; Panos, Brandon</creator><creatorcontrib>Ullmann, Denis ; Voloshynovskiy, Slava ; Kleint, Lucia ; Krucker, Sam ; Melchior, Martin ; Huwyler, Cedric ; Panos, Brandon</creatorcontrib><description>Flares are an eruptive phenomenon observed on the sun, which are major protagonists in space weather and can cause adverse effects such as disruptions in communication, power grid failure and damage of satellites. Our method answers the importance of the time component in some scientific video observations, especially for flare detection and the study is based on NASA's Interface Region Imaging Spectrograph (IRIS) observations of the sun since 2013, which consists of a very asymmetrical and unlabeled big data. For detecting and analyzing flares in our IRIS solar video observation data, we created a discrete cosine transform tool DCT- Tensor-Net which uses an empirically handcrafted harmonic representation of our video data. This is one of the first tools for detecting flares based on IRIS images. Our method reduces the false detections of flares by taking into consideration their specific local spatial and temporal patterns.</description><identifier>EISSN: 2471-8963</identifier><identifier>EISBN: 9781538668979</identifier><identifier>EISBN: 1538668971</identifier><identifier>DOI: 10.1109/EUVIP.2018.8611672</identifier><language>eng</language><publisher>IEEE</publisher><subject>astrophysics ; big data applications ; computer aided analysis ; data analysis ; data preprocessing ; data processing ; detection algorithm ; Discrete cosine transforms ; feature extraction ; Frequency-domain analysis ; image texture analysis ; Iris ; Satellites ; scientific computing ; Sun</subject><ispartof>2018 7th European Workshop on Visual Information Processing (EUVIP), 2018, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8611672$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8611672$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ullmann, Denis</creatorcontrib><creatorcontrib>Voloshynovskiy, Slava</creatorcontrib><creatorcontrib>Kleint, Lucia</creatorcontrib><creatorcontrib>Krucker, Sam</creatorcontrib><creatorcontrib>Melchior, Martin</creatorcontrib><creatorcontrib>Huwyler, Cedric</creatorcontrib><creatorcontrib>Panos, Brandon</creatorcontrib><title>DCT-Tensor-Net for Solar Flares Detection on IRIS Data</title><title>2018 7th European Workshop on Visual Information Processing (EUVIP)</title><addtitle>EUVIP</addtitle><description>Flares are an eruptive phenomenon observed on the sun, which are major protagonists in space weather and can cause adverse effects such as disruptions in communication, power grid failure and damage of satellites. Our method answers the importance of the time component in some scientific video observations, especially for flare detection and the study is based on NASA's Interface Region Imaging Spectrograph (IRIS) observations of the sun since 2013, which consists of a very asymmetrical and unlabeled big data. For detecting and analyzing flares in our IRIS solar video observation data, we created a discrete cosine transform tool DCT- Tensor-Net which uses an empirically handcrafted harmonic representation of our video data. This is one of the first tools for detecting flares based on IRIS images. Our method reduces the false detections of flares by taking into consideration their specific local spatial and temporal patterns.</description><subject>astrophysics</subject><subject>big data applications</subject><subject>computer aided analysis</subject><subject>data analysis</subject><subject>data preprocessing</subject><subject>data processing</subject><subject>detection algorithm</subject><subject>Discrete cosine transforms</subject><subject>feature extraction</subject><subject>Frequency-domain analysis</subject><subject>image texture analysis</subject><subject>Iris</subject><subject>Satellites</subject><subject>scientific computing</subject><subject>Sun</subject><issn>2471-8963</issn><isbn>9781538668979</isbn><isbn>1538668971</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8FKw0AURUdBsNT8gG7mBybOm2TezCwlaTVQVGzqtkxeXiBSG0my8e-ttHC5Z3M5cIW4B50C6PC42n1W76nR4FOPAOjMlUiC82Azj-iDC9diYXIHygfMbkUyTV9aa_jf6nwhsCxqVfNxGkb1yrPshlFuh0Mc5fpUPMmSZ6a5H47ylOqj2soyzvFO3HTxMHFy4VLs1qu6eFGbt-eqeNqoHpydlW10xEAE3joEw4FbajqLpsVc2xa1ZWogssWWiBqKkDMbJqYODWubLcXD2dsz8_5n7L_j-Lu_PM3-AMH9RnY</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Ullmann, Denis</creator><creator>Voloshynovskiy, Slava</creator><creator>Kleint, Lucia</creator><creator>Krucker, Sam</creator><creator>Melchior, Martin</creator><creator>Huwyler, Cedric</creator><creator>Panos, Brandon</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201811</creationdate><title>DCT-Tensor-Net for Solar Flares Detection on IRIS Data</title><author>Ullmann, Denis ; Voloshynovskiy, Slava ; Kleint, Lucia ; Krucker, Sam ; Melchior, Martin ; Huwyler, Cedric ; Panos, Brandon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5b0a69cc1857612e9edcbf562d6405d605ecb1ae56dcccbca14ee2ececf62e053</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>astrophysics</topic><topic>big data applications</topic><topic>computer aided analysis</topic><topic>data analysis</topic><topic>data preprocessing</topic><topic>data processing</topic><topic>detection algorithm</topic><topic>Discrete cosine transforms</topic><topic>feature extraction</topic><topic>Frequency-domain analysis</topic><topic>image texture analysis</topic><topic>Iris</topic><topic>Satellites</topic><topic>scientific computing</topic><topic>Sun</topic><toplevel>online_resources</toplevel><creatorcontrib>Ullmann, Denis</creatorcontrib><creatorcontrib>Voloshynovskiy, Slava</creatorcontrib><creatorcontrib>Kleint, Lucia</creatorcontrib><creatorcontrib>Krucker, Sam</creatorcontrib><creatorcontrib>Melchior, Martin</creatorcontrib><creatorcontrib>Huwyler, Cedric</creatorcontrib><creatorcontrib>Panos, Brandon</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ullmann, Denis</au><au>Voloshynovskiy, Slava</au><au>Kleint, Lucia</au><au>Krucker, Sam</au><au>Melchior, Martin</au><au>Huwyler, Cedric</au><au>Panos, Brandon</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>DCT-Tensor-Net for Solar Flares Detection on IRIS Data</atitle><btitle>2018 7th European Workshop on Visual Information Processing (EUVIP)</btitle><stitle>EUVIP</stitle><date>2018-11</date><risdate>2018</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2471-8963</eissn><eisbn>9781538668979</eisbn><eisbn>1538668971</eisbn><abstract>Flares are an eruptive phenomenon observed on the sun, which are major protagonists in space weather and can cause adverse effects such as disruptions in communication, power grid failure and damage of satellites. Our method answers the importance of the time component in some scientific video observations, especially for flare detection and the study is based on NASA's Interface Region Imaging Spectrograph (IRIS) observations of the sun since 2013, which consists of a very asymmetrical and unlabeled big data. For detecting and analyzing flares in our IRIS solar video observation data, we created a discrete cosine transform tool DCT- Tensor-Net which uses an empirically handcrafted harmonic representation of our video data. This is one of the first tools for detecting flares based on IRIS images. Our method reduces the false detections of flares by taking into consideration their specific local spatial and temporal patterns.</abstract><pub>IEEE</pub><doi>10.1109/EUVIP.2018.8611672</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2471-8963
ispartof 2018 7th European Workshop on Visual Information Processing (EUVIP), 2018, p.1-6
issn 2471-8963
language eng
recordid cdi_ieee_primary_8611672
source IEEE Xplore All Conference Series
subjects astrophysics
big data applications
computer aided analysis
data analysis
data preprocessing
data processing
detection algorithm
Discrete cosine transforms
feature extraction
Frequency-domain analysis
image texture analysis
Iris
Satellites
scientific computing
Sun
title DCT-Tensor-Net for Solar Flares Detection on IRIS Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=DCT-Tensor-Net%20for%20Solar%20Flares%20Detection%20on%20IRIS%20Data&rft.btitle=2018%207th%20European%20Workshop%20on%20Visual%20Information%20Processing%20(EUVIP)&rft.au=Ullmann,%20Denis&rft.date=2018-11&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2471-8963&rft_id=info:doi/10.1109/EUVIP.2018.8611672&rft.eisbn=9781538668979&rft.eisbn_list=1538668971&rft_dat=%3Cieee_CHZPO%3E8611672%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5b0a69cc1857612e9edcbf562d6405d605ecb1ae56dcccbca14ee2ececf62e053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8611672&rfr_iscdi=true