Loading…

Automated Detection of Benign and Malignant in Breast Histopathology Images

Breast cancer detection and classification using histological images play a critical role in the breast cancer diagnosis process. This paper presents a framework for autodetection and classification of breast cancer from microscopic histological images. The images are classified into benign or malig...

Full description

Saved in:
Bibliographic Details
Main Authors: Baker, Qanita Bani, Zaitoun, Toqa' Abu, Banat, Sajda, Eaydat, Eman, Alsmirat, Mohammad
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Baker, Qanita Bani
Zaitoun, Toqa' Abu
Banat, Sajda
Eaydat, Eman
Alsmirat, Mohammad
description Breast cancer detection and classification using histological images play a critical role in the breast cancer diagnosis process. This paper presents a framework for autodetection and classification of breast cancer from microscopic histological images. The images are classified into benign or malignant. The proposed framework involves several steps which include image enhancement, image segmentation, features extraction, and images classification. The proposed framework utilizes a novel combination of K-means clustering and watershed algorithms in the segmentation step. We used K-means clustering to produce an initial segmented image and then we applied the watershed segmentation algorithm. Classification results show that the proposed method effectively detect and classify breast cancer from histological image with accuracy of 70.7% using a proposed Rule-Based classifier and 86.5% using a Decision Tree classifier.
doi_str_mv 10.1109/AICCSA.2018.8612799
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8612799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8612799</ieee_id><sourcerecordid>8612799</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-39c747ee4a69936f4cc220318ead3d4354f98ce7016ad4935c7a3404b99d6d963</originalsourceid><addsrcrecordid>eNotj8tOwzAQAA0SEm3hC3rxD6TYXtvJHtPwaEQRB-BcLfEmGLVJlZhD_x4kepo5jTRCLLVaaa3wrqyr6q1cGaWLVeG1yREvxFw7KDxqo9ylmBntdeYA1LWYT9O3UoCmcDPxXP6k4UCJg7znxE2KQy-HVq65j10vqQ_yhfZ_Sn2SsZfrkWlKchOnNBwpfQ37oTvJ-kAdTzfiqqX9xLdnLsTH48N7tcm2r091VW6zqHOXMsAmtzmzJY8IvrVNY4wCXTAFCBacbbFoOFfaU7AIrskJrLKfiMEH9LAQy_9uZObdcYwHGk-78zj8AjYmTLY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automated Detection of Benign and Malignant in Breast Histopathology Images</title><source>IEEE Xplore All Conference Series</source><creator>Baker, Qanita Bani ; Zaitoun, Toqa' Abu ; Banat, Sajda ; Eaydat, Eman ; Alsmirat, Mohammad</creator><creatorcontrib>Baker, Qanita Bani ; Zaitoun, Toqa' Abu ; Banat, Sajda ; Eaydat, Eman ; Alsmirat, Mohammad</creatorcontrib><description>Breast cancer detection and classification using histological images play a critical role in the breast cancer diagnosis process. This paper presents a framework for autodetection and classification of breast cancer from microscopic histological images. The images are classified into benign or malignant. The proposed framework involves several steps which include image enhancement, image segmentation, features extraction, and images classification. The proposed framework utilizes a novel combination of K-means clustering and watershed algorithms in the segmentation step. We used K-means clustering to produce an initial segmented image and then we applied the watershed segmentation algorithm. Classification results show that the proposed method effectively detect and classify breast cancer from histological image with accuracy of 70.7% using a proposed Rule-Based classifier and 86.5% using a Decision Tree classifier.</description><identifier>EISSN: 2161-5330</identifier><identifier>EISBN: 1538691205</identifier><identifier>EISBN: 9781538691205</identifier><identifier>DOI: 10.1109/AICCSA.2018.8612799</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benign ; Breast cancer ; Clustering algorithms ; Digital Pathology ; Feature extraction ; Image Analysis ; Image color analysis ; Image segmentation ; K-means ; Malignant ; Microscopic Images ; Watershed</subject><ispartof>2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), 2018, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8612799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8612799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Baker, Qanita Bani</creatorcontrib><creatorcontrib>Zaitoun, Toqa' Abu</creatorcontrib><creatorcontrib>Banat, Sajda</creatorcontrib><creatorcontrib>Eaydat, Eman</creatorcontrib><creatorcontrib>Alsmirat, Mohammad</creatorcontrib><title>Automated Detection of Benign and Malignant in Breast Histopathology Images</title><title>2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA)</title><addtitle>AICCSA</addtitle><description>Breast cancer detection and classification using histological images play a critical role in the breast cancer diagnosis process. This paper presents a framework for autodetection and classification of breast cancer from microscopic histological images. The images are classified into benign or malignant. The proposed framework involves several steps which include image enhancement, image segmentation, features extraction, and images classification. The proposed framework utilizes a novel combination of K-means clustering and watershed algorithms in the segmentation step. We used K-means clustering to produce an initial segmented image and then we applied the watershed segmentation algorithm. Classification results show that the proposed method effectively detect and classify breast cancer from histological image with accuracy of 70.7% using a proposed Rule-Based classifier and 86.5% using a Decision Tree classifier.</description><subject>Benign</subject><subject>Breast cancer</subject><subject>Clustering algorithms</subject><subject>Digital Pathology</subject><subject>Feature extraction</subject><subject>Image Analysis</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>K-means</subject><subject>Malignant</subject><subject>Microscopic Images</subject><subject>Watershed</subject><issn>2161-5330</issn><isbn>1538691205</isbn><isbn>9781538691205</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tOwzAQAA0SEm3hC3rxD6TYXtvJHtPwaEQRB-BcLfEmGLVJlZhD_x4kepo5jTRCLLVaaa3wrqyr6q1cGaWLVeG1yREvxFw7KDxqo9ylmBntdeYA1LWYT9O3UoCmcDPxXP6k4UCJg7znxE2KQy-HVq65j10vqQ_yhfZ_Sn2SsZfrkWlKchOnNBwpfQ37oTvJ-kAdTzfiqqX9xLdnLsTH48N7tcm2r091VW6zqHOXMsAmtzmzJY8IvrVNY4wCXTAFCBacbbFoOFfaU7AIrskJrLKfiMEH9LAQy_9uZObdcYwHGk-78zj8AjYmTLY</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Baker, Qanita Bani</creator><creator>Zaitoun, Toqa' Abu</creator><creator>Banat, Sajda</creator><creator>Eaydat, Eman</creator><creator>Alsmirat, Mohammad</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201810</creationdate><title>Automated Detection of Benign and Malignant in Breast Histopathology Images</title><author>Baker, Qanita Bani ; Zaitoun, Toqa' Abu ; Banat, Sajda ; Eaydat, Eman ; Alsmirat, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-39c747ee4a69936f4cc220318ead3d4354f98ce7016ad4935c7a3404b99d6d963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Benign</topic><topic>Breast cancer</topic><topic>Clustering algorithms</topic><topic>Digital Pathology</topic><topic>Feature extraction</topic><topic>Image Analysis</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>K-means</topic><topic>Malignant</topic><topic>Microscopic Images</topic><topic>Watershed</topic><toplevel>online_resources</toplevel><creatorcontrib>Baker, Qanita Bani</creatorcontrib><creatorcontrib>Zaitoun, Toqa' Abu</creatorcontrib><creatorcontrib>Banat, Sajda</creatorcontrib><creatorcontrib>Eaydat, Eman</creatorcontrib><creatorcontrib>Alsmirat, Mohammad</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baker, Qanita Bani</au><au>Zaitoun, Toqa' Abu</au><au>Banat, Sajda</au><au>Eaydat, Eman</au><au>Alsmirat, Mohammad</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automated Detection of Benign and Malignant in Breast Histopathology Images</atitle><btitle>2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA)</btitle><stitle>AICCSA</stitle><date>2018-10</date><risdate>2018</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2161-5330</eissn><eisbn>1538691205</eisbn><eisbn>9781538691205</eisbn><abstract>Breast cancer detection and classification using histological images play a critical role in the breast cancer diagnosis process. This paper presents a framework for autodetection and classification of breast cancer from microscopic histological images. The images are classified into benign or malignant. The proposed framework involves several steps which include image enhancement, image segmentation, features extraction, and images classification. The proposed framework utilizes a novel combination of K-means clustering and watershed algorithms in the segmentation step. We used K-means clustering to produce an initial segmented image and then we applied the watershed segmentation algorithm. Classification results show that the proposed method effectively detect and classify breast cancer from histological image with accuracy of 70.7% using a proposed Rule-Based classifier and 86.5% using a Decision Tree classifier.</abstract><pub>IEEE</pub><doi>10.1109/AICCSA.2018.8612799</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2161-5330
ispartof 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), 2018, p.1-5
issn 2161-5330
language eng
recordid cdi_ieee_primary_8612799
source IEEE Xplore All Conference Series
subjects Benign
Breast cancer
Clustering algorithms
Digital Pathology
Feature extraction
Image Analysis
Image color analysis
Image segmentation
K-means
Malignant
Microscopic Images
Watershed
title Automated Detection of Benign and Malignant in Breast Histopathology Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automated%20Detection%20of%20Benign%20and%20Malignant%20in%20Breast%20Histopathology%20Images&rft.btitle=2018%20IEEE/ACS%2015th%20International%20Conference%20on%20Computer%20Systems%20and%20Applications%20(AICCSA)&rft.au=Baker,%20Qanita%20Bani&rft.date=2018-10&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2161-5330&rft_id=info:doi/10.1109/AICCSA.2018.8612799&rft.eisbn=1538691205&rft.eisbn_list=9781538691205&rft_dat=%3Cieee_CHZPO%3E8612799%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-39c747ee4a69936f4cc220318ead3d4354f98ce7016ad4935c7a3404b99d6d963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8612799&rfr_iscdi=true