Loading…

Using hidden Markov models to build an automatic, continuous and probabilistic sleep stager

We report about an automatic continuous sleep stager which is based on probabilistic principles employing hidden Markov models (HMMs). Our sleep stager offers the advantage of being objective by not relying on human scorers, having much finer temporal resolution (1 second instead of 30 second): and...

Full description

Saved in:
Bibliographic Details
Main Authors: Flexer, A., Sykacek, P., Rezek, I., Dorffner, G.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 631 vol.3
container_issue
container_start_page 627
container_title
container_volume 3
creator Flexer, A.
Sykacek, P.
Rezek, I.
Dorffner, G.
description We report about an automatic continuous sleep stager which is based on probabilistic principles employing hidden Markov models (HMMs). Our sleep stager offers the advantage of being objective by not relying on human scorers, having much finer temporal resolution (1 second instead of 30 second): and being based on solid probabilistic principles rather than a predefined set of rules. Results obtained for nine whole night sleep recordings are reported.
doi_str_mv 10.1109/IJCNN.2000.861392
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_861392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>861392</ieee_id><sourcerecordid>861392</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-9a5674e5ff12f09e21decc8b23c1672c2b8d92812880ee163faf88c939a242b03</originalsourceid><addsrcrecordid>eNot0MtOwzAUBFCLh0RV-gGw8geQ4nvd-LFEFY-iUjZ0xaJy7JtiSOMqTpD4eyLBahZHM4th7ArEHEDY29XzcrOZoxBibhRIiydsAmVpCmkFnrKZ1UZoZUuhwOqz0YQ1hS61umCznD_HHghZKoQJe9_m2O75RwyBWv7iuq_0zQ8pUJN5n3g1xCZw13I39Ong-uhvuE9tH9shDXmEwI9dqlwVm5hH5bkhOvLcuz11l-y8dk2m2X9O2fbh_m35VKxfH1fLu3URQWNfWFcqvaCyrgFrYQkhkPemQulBafRYmWDRABojiEDJ2tXGeCutwwVWQk7Z9d9uJKLdsYsH1_3s_p6Rv2ZiVfE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using hidden Markov models to build an automatic, continuous and probabilistic sleep stager</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Flexer, A. ; Sykacek, P. ; Rezek, I. ; Dorffner, G.</creator><creatorcontrib>Flexer, A. ; Sykacek, P. ; Rezek, I. ; Dorffner, G.</creatorcontrib><description>We report about an automatic continuous sleep stager which is based on probabilistic principles employing hidden Markov models (HMMs). Our sleep stager offers the advantage of being objective by not relying on human scorers, having much finer temporal resolution (1 second instead of 30 second): and being based on solid probabilistic principles rather than a predefined set of rules. Results obtained for nine whole night sleep recordings are reported.</description><identifier>ISSN: 1098-7576</identifier><identifier>ISBN: 9780769506197</identifier><identifier>ISBN: 0769506194</identifier><identifier>EISSN: 1558-3902</identifier><identifier>DOI: 10.1109/IJCNN.2000.861392</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Electroencephalography ; Electromyography ; Electrooculography ; Hidden Markov models ; Humans ; Intelligent robots ; Probability distribution ; Robotics and automation ; Solids</subject><ispartof>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 2000, Vol.3, p.627-631 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/861392$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/861392$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Flexer, A.</creatorcontrib><creatorcontrib>Sykacek, P.</creatorcontrib><creatorcontrib>Rezek, I.</creatorcontrib><creatorcontrib>Dorffner, G.</creatorcontrib><title>Using hidden Markov models to build an automatic, continuous and probabilistic sleep stager</title><title>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium</title><addtitle>IJCNN</addtitle><description>We report about an automatic continuous sleep stager which is based on probabilistic principles employing hidden Markov models (HMMs). Our sleep stager offers the advantage of being objective by not relying on human scorers, having much finer temporal resolution (1 second instead of 30 second): and being based on solid probabilistic principles rather than a predefined set of rules. Results obtained for nine whole night sleep recordings are reported.</description><subject>Artificial intelligence</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Electrooculography</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Intelligent robots</subject><subject>Probability distribution</subject><subject>Robotics and automation</subject><subject>Solids</subject><issn>1098-7576</issn><issn>1558-3902</issn><isbn>9780769506197</isbn><isbn>0769506194</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNot0MtOwzAUBFCLh0RV-gGw8geQ4nvd-LFEFY-iUjZ0xaJy7JtiSOMqTpD4eyLBahZHM4th7ArEHEDY29XzcrOZoxBibhRIiydsAmVpCmkFnrKZ1UZoZUuhwOqz0YQ1hS61umCznD_HHghZKoQJe9_m2O75RwyBWv7iuq_0zQ8pUJN5n3g1xCZw13I39Ong-uhvuE9tH9shDXmEwI9dqlwVm5hH5bkhOvLcuz11l-y8dk2m2X9O2fbh_m35VKxfH1fLu3URQWNfWFcqvaCyrgFrYQkhkPemQulBafRYmWDRABojiEDJ2tXGeCutwwVWQk7Z9d9uJKLdsYsH1_3s_p6Rv2ZiVfE</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Flexer, A.</creator><creator>Sykacek, P.</creator><creator>Rezek, I.</creator><creator>Dorffner, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Using hidden Markov models to build an automatic, continuous and probabilistic sleep stager</title><author>Flexer, A. ; Sykacek, P. ; Rezek, I. ; Dorffner, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-9a5674e5ff12f09e21decc8b23c1672c2b8d92812880ee163faf88c939a242b03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Artificial intelligence</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Electrooculography</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Intelligent robots</topic><topic>Probability distribution</topic><topic>Robotics and automation</topic><topic>Solids</topic><toplevel>online_resources</toplevel><creatorcontrib>Flexer, A.</creatorcontrib><creatorcontrib>Sykacek, P.</creatorcontrib><creatorcontrib>Rezek, I.</creatorcontrib><creatorcontrib>Dorffner, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Flexer, A.</au><au>Sykacek, P.</au><au>Rezek, I.</au><au>Dorffner, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using hidden Markov models to build an automatic, continuous and probabilistic sleep stager</atitle><btitle>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium</btitle><stitle>IJCNN</stitle><date>2000</date><risdate>2000</risdate><volume>3</volume><spage>627</spage><epage>631 vol.3</epage><pages>627-631 vol.3</pages><issn>1098-7576</issn><eissn>1558-3902</eissn><isbn>9780769506197</isbn><isbn>0769506194</isbn><abstract>We report about an automatic continuous sleep stager which is based on probabilistic principles employing hidden Markov models (HMMs). Our sleep stager offers the advantage of being objective by not relying on human scorers, having much finer temporal resolution (1 second instead of 30 second): and being based on solid probabilistic principles rather than a predefined set of rules. Results obtained for nine whole night sleep recordings are reported.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2000.861392</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7576
ispartof Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 2000, Vol.3, p.627-631 vol.3
issn 1098-7576
1558-3902
language eng
recordid cdi_ieee_primary_861392
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Electroencephalography
Electromyography
Electrooculography
Hidden Markov models
Humans
Intelligent robots
Probability distribution
Robotics and automation
Solids
title Using hidden Markov models to build an automatic, continuous and probabilistic sleep stager
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20hidden%20Markov%20models%20to%20build%20an%20automatic,%20continuous%20and%20probabilistic%20sleep%20stager&rft.btitle=Proceedings%20of%20the%20IEEE-INNS-ENNS%20International%20Joint%20Conference%20on%20Neural%20Networks.%20IJCNN%202000.%20Neural%20Computing:%20New%20Challenges%20and%20Perspectives%20for%20the%20New%20Millennium&rft.au=Flexer,%20A.&rft.date=2000&rft.volume=3&rft.spage=627&rft.epage=631%20vol.3&rft.pages=627-631%20vol.3&rft.issn=1098-7576&rft.eissn=1558-3902&rft.isbn=9780769506197&rft.isbn_list=0769506194&rft_id=info:doi/10.1109/IJCNN.2000.861392&rft_dat=%3Cieee_6IE%3E861392%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-9a5674e5ff12f09e21decc8b23c1672c2b8d92812880ee163faf88c939a242b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=861392&rfr_iscdi=true