Loading…
Using hidden Markov models to build an automatic, continuous and probabilistic sleep stager
We report about an automatic continuous sleep stager which is based on probabilistic principles employing hidden Markov models (HMMs). Our sleep stager offers the advantage of being objective by not relying on human scorers, having much finer temporal resolution (1 second instead of 30 second): and...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 631 vol.3 |
container_issue | |
container_start_page | 627 |
container_title | |
container_volume | 3 |
creator | Flexer, A. Sykacek, P. Rezek, I. Dorffner, G. |
description | We report about an automatic continuous sleep stager which is based on probabilistic principles employing hidden Markov models (HMMs). Our sleep stager offers the advantage of being objective by not relying on human scorers, having much finer temporal resolution (1 second instead of 30 second): and being based on solid probabilistic principles rather than a predefined set of rules. Results obtained for nine whole night sleep recordings are reported. |
doi_str_mv | 10.1109/IJCNN.2000.861392 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_861392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>861392</ieee_id><sourcerecordid>861392</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-9a5674e5ff12f09e21decc8b23c1672c2b8d92812880ee163faf88c939a242b03</originalsourceid><addsrcrecordid>eNot0MtOwzAUBFCLh0RV-gGw8geQ4nvd-LFEFY-iUjZ0xaJy7JtiSOMqTpD4eyLBahZHM4th7ArEHEDY29XzcrOZoxBibhRIiydsAmVpCmkFnrKZ1UZoZUuhwOqz0YQ1hS61umCznD_HHghZKoQJe9_m2O75RwyBWv7iuq_0zQ8pUJN5n3g1xCZw13I39Ong-uhvuE9tH9shDXmEwI9dqlwVm5hH5bkhOvLcuz11l-y8dk2m2X9O2fbh_m35VKxfH1fLu3URQWNfWFcqvaCyrgFrYQkhkPemQulBafRYmWDRABojiEDJ2tXGeCutwwVWQk7Z9d9uJKLdsYsH1_3s_p6Rv2ZiVfE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using hidden Markov models to build an automatic, continuous and probabilistic sleep stager</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Flexer, A. ; Sykacek, P. ; Rezek, I. ; Dorffner, G.</creator><creatorcontrib>Flexer, A. ; Sykacek, P. ; Rezek, I. ; Dorffner, G.</creatorcontrib><description>We report about an automatic continuous sleep stager which is based on probabilistic principles employing hidden Markov models (HMMs). Our sleep stager offers the advantage of being objective by not relying on human scorers, having much finer temporal resolution (1 second instead of 30 second): and being based on solid probabilistic principles rather than a predefined set of rules. Results obtained for nine whole night sleep recordings are reported.</description><identifier>ISSN: 1098-7576</identifier><identifier>ISBN: 9780769506197</identifier><identifier>ISBN: 0769506194</identifier><identifier>EISSN: 1558-3902</identifier><identifier>DOI: 10.1109/IJCNN.2000.861392</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Electroencephalography ; Electromyography ; Electrooculography ; Hidden Markov models ; Humans ; Intelligent robots ; Probability distribution ; Robotics and automation ; Solids</subject><ispartof>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 2000, Vol.3, p.627-631 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/861392$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/861392$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Flexer, A.</creatorcontrib><creatorcontrib>Sykacek, P.</creatorcontrib><creatorcontrib>Rezek, I.</creatorcontrib><creatorcontrib>Dorffner, G.</creatorcontrib><title>Using hidden Markov models to build an automatic, continuous and probabilistic sleep stager</title><title>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium</title><addtitle>IJCNN</addtitle><description>We report about an automatic continuous sleep stager which is based on probabilistic principles employing hidden Markov models (HMMs). Our sleep stager offers the advantage of being objective by not relying on human scorers, having much finer temporal resolution (1 second instead of 30 second): and being based on solid probabilistic principles rather than a predefined set of rules. Results obtained for nine whole night sleep recordings are reported.</description><subject>Artificial intelligence</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Electrooculography</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Intelligent robots</subject><subject>Probability distribution</subject><subject>Robotics and automation</subject><subject>Solids</subject><issn>1098-7576</issn><issn>1558-3902</issn><isbn>9780769506197</isbn><isbn>0769506194</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNot0MtOwzAUBFCLh0RV-gGw8geQ4nvd-LFEFY-iUjZ0xaJy7JtiSOMqTpD4eyLBahZHM4th7ArEHEDY29XzcrOZoxBibhRIiydsAmVpCmkFnrKZ1UZoZUuhwOqz0YQ1hS61umCznD_HHghZKoQJe9_m2O75RwyBWv7iuq_0zQ8pUJN5n3g1xCZw13I39Ong-uhvuE9tH9shDXmEwI9dqlwVm5hH5bkhOvLcuz11l-y8dk2m2X9O2fbh_m35VKxfH1fLu3URQWNfWFcqvaCyrgFrYQkhkPemQulBafRYmWDRABojiEDJ2tXGeCutwwVWQk7Z9d9uJKLdsYsH1_3s_p6Rv2ZiVfE</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Flexer, A.</creator><creator>Sykacek, P.</creator><creator>Rezek, I.</creator><creator>Dorffner, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Using hidden Markov models to build an automatic, continuous and probabilistic sleep stager</title><author>Flexer, A. ; Sykacek, P. ; Rezek, I. ; Dorffner, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-9a5674e5ff12f09e21decc8b23c1672c2b8d92812880ee163faf88c939a242b03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Artificial intelligence</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Electrooculography</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Intelligent robots</topic><topic>Probability distribution</topic><topic>Robotics and automation</topic><topic>Solids</topic><toplevel>online_resources</toplevel><creatorcontrib>Flexer, A.</creatorcontrib><creatorcontrib>Sykacek, P.</creatorcontrib><creatorcontrib>Rezek, I.</creatorcontrib><creatorcontrib>Dorffner, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Flexer, A.</au><au>Sykacek, P.</au><au>Rezek, I.</au><au>Dorffner, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using hidden Markov models to build an automatic, continuous and probabilistic sleep stager</atitle><btitle>Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium</btitle><stitle>IJCNN</stitle><date>2000</date><risdate>2000</risdate><volume>3</volume><spage>627</spage><epage>631 vol.3</epage><pages>627-631 vol.3</pages><issn>1098-7576</issn><eissn>1558-3902</eissn><isbn>9780769506197</isbn><isbn>0769506194</isbn><abstract>We report about an automatic continuous sleep stager which is based on probabilistic principles employing hidden Markov models (HMMs). Our sleep stager offers the advantage of being objective by not relying on human scorers, having much finer temporal resolution (1 second instead of 30 second): and being based on solid probabilistic principles rather than a predefined set of rules. Results obtained for nine whole night sleep recordings are reported.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2000.861392</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1098-7576 |
ispartof | Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 2000, Vol.3, p.627-631 vol.3 |
issn | 1098-7576 1558-3902 |
language | eng |
recordid | cdi_ieee_primary_861392 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Electroencephalography Electromyography Electrooculography Hidden Markov models Humans Intelligent robots Probability distribution Robotics and automation Solids |
title | Using hidden Markov models to build an automatic, continuous and probabilistic sleep stager |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20hidden%20Markov%20models%20to%20build%20an%20automatic,%20continuous%20and%20probabilistic%20sleep%20stager&rft.btitle=Proceedings%20of%20the%20IEEE-INNS-ENNS%20International%20Joint%20Conference%20on%20Neural%20Networks.%20IJCNN%202000.%20Neural%20Computing:%20New%20Challenges%20and%20Perspectives%20for%20the%20New%20Millennium&rft.au=Flexer,%20A.&rft.date=2000&rft.volume=3&rft.spage=627&rft.epage=631%20vol.3&rft.pages=627-631%20vol.3&rft.issn=1098-7576&rft.eissn=1558-3902&rft.isbn=9780769506197&rft.isbn_list=0769506194&rft_id=info:doi/10.1109/IJCNN.2000.861392&rft_dat=%3Cieee_6IE%3E861392%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-9a5674e5ff12f09e21decc8b23c1672c2b8d92812880ee163faf88c939a242b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=861392&rfr_iscdi=true |