Loading…

Autoencoder and Its Various Variants

The concept of autoencoder was originally proposed by LeCun in 1987, early works on autoencoder were used for dimensionality reduction or feature learning. Recently, with the popularity of deep learning research, autoencoder has been brought to the forefront of generative modeling. Many variants of...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhai, Junhai, Zhang, Sufang, Chen, Junfen, He, Qiang
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c220t-be81b20f00d2355d0fe32dab774d24a678fcb828b7839db6844013854d1d5d713
cites
container_end_page 419
container_issue
container_start_page 415
container_title
container_volume
creator Zhai, Junhai
Zhang, Sufang
Chen, Junfen
He, Qiang
description The concept of autoencoder was originally proposed by LeCun in 1987, early works on autoencoder were used for dimensionality reduction or feature learning. Recently, with the popularity of deep learning research, autoencoder has been brought to the forefront of generative modeling. Many variants of autoencoder have been proposed by different researchers and have been successfully applied in many fields, such as computer vision, speech recognition and natural language processing. In this paper, we present a comprehensive survey on autoencoder and its various variants. Furthermore, we also present the lineage of the surveyed autoencoders. This paper can provide researchers engaged in related works with very valuable help.
doi_str_mv 10.1109/SMC.2018.00080
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8616075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8616075</ieee_id><sourcerecordid>8616075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-be81b20f00d2355d0fe32dab774d24a678fcb828b7839db6844013854d1d5d713</originalsourceid><addsrcrecordid>eNotzD1PwzAQAFCDhERbWFlYMrAm3J199nWsIiiVihj4WCs750hBkKAkHfj3DGV62zPmBqFChPX963NdEaBUACBwZpbIVrz3DHRuFsQhlOiZL81ymj4BCBzKwtxtjvOQ-2bQPBax12I3T8VHHLvheDL283RlLtr4NeXrf1fm_fHhrX4q9y_bXb3Zlw0RzGXKgomgBVCyzApttqQxheCUXPRB2iYJSQpi15q8OAdohZ2isga0K3N7eruc8-Fn7L7j-HsQjx4C2z95pD0N</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Autoencoder and Its Various Variants</title><source>IEEE Xplore All Conference Series</source><creator>Zhai, Junhai ; Zhang, Sufang ; Chen, Junfen ; He, Qiang</creator><creatorcontrib>Zhai, Junhai ; Zhang, Sufang ; Chen, Junfen ; He, Qiang</creatorcontrib><description>The concept of autoencoder was originally proposed by LeCun in 1987, early works on autoencoder were used for dimensionality reduction or feature learning. Recently, with the popularity of deep learning research, autoencoder has been brought to the forefront of generative modeling. Many variants of autoencoder have been proposed by different researchers and have been successfully applied in many fields, such as computer vision, speech recognition and natural language processing. In this paper, we present a comprehensive survey on autoencoder and its various variants. Furthermore, we also present the lineage of the surveyed autoencoders. This paper can provide researchers engaged in related works with very valuable help.</description><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 1538666502</identifier><identifier>EISBN: 9781538666500</identifier><identifier>DOI: 10.1109/SMC.2018.00080</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>autoencoder ; Computational modeling ; Data models ; decoder ; Decoding ; deep learning ; feature learning ; Gallium nitride ; Generative adversarial networks ; generative model ; Mathematical model ; Training</subject><ispartof>2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2018, p.415-419</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c220t-be81b20f00d2355d0fe32dab774d24a678fcb828b7839db6844013854d1d5d713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8616075$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,23911,23912,25121,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8616075$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhai, Junhai</creatorcontrib><creatorcontrib>Zhang, Sufang</creatorcontrib><creatorcontrib>Chen, Junfen</creatorcontrib><creatorcontrib>He, Qiang</creatorcontrib><title>Autoencoder and Its Various Variants</title><title>2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</title><addtitle>SMC</addtitle><description>The concept of autoencoder was originally proposed by LeCun in 1987, early works on autoencoder were used for dimensionality reduction or feature learning. Recently, with the popularity of deep learning research, autoencoder has been brought to the forefront of generative modeling. Many variants of autoencoder have been proposed by different researchers and have been successfully applied in many fields, such as computer vision, speech recognition and natural language processing. In this paper, we present a comprehensive survey on autoencoder and its various variants. Furthermore, we also present the lineage of the surveyed autoencoders. This paper can provide researchers engaged in related works with very valuable help.</description><subject>autoencoder</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>decoder</subject><subject>Decoding</subject><subject>deep learning</subject><subject>feature learning</subject><subject>Gallium nitride</subject><subject>Generative adversarial networks</subject><subject>generative model</subject><subject>Mathematical model</subject><subject>Training</subject><issn>2577-1655</issn><isbn>1538666502</isbn><isbn>9781538666500</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzD1PwzAQAFCDhERbWFlYMrAm3J199nWsIiiVihj4WCs750hBkKAkHfj3DGV62zPmBqFChPX963NdEaBUACBwZpbIVrz3DHRuFsQhlOiZL81ymj4BCBzKwtxtjvOQ-2bQPBax12I3T8VHHLvheDL283RlLtr4NeXrf1fm_fHhrX4q9y_bXb3Zlw0RzGXKgomgBVCyzApttqQxheCUXPRB2iYJSQpi15q8OAdohZ2isga0K3N7eruc8-Fn7L7j-HsQjx4C2z95pD0N</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Zhai, Junhai</creator><creator>Zhang, Sufang</creator><creator>Chen, Junfen</creator><creator>He, Qiang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201810</creationdate><title>Autoencoder and Its Various Variants</title><author>Zhai, Junhai ; Zhang, Sufang ; Chen, Junfen ; He, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-be81b20f00d2355d0fe32dab774d24a678fcb828b7839db6844013854d1d5d713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>autoencoder</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>decoder</topic><topic>Decoding</topic><topic>deep learning</topic><topic>feature learning</topic><topic>Gallium nitride</topic><topic>Generative adversarial networks</topic><topic>generative model</topic><topic>Mathematical model</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Junhai</creatorcontrib><creatorcontrib>Zhang, Sufang</creatorcontrib><creatorcontrib>Chen, Junfen</creatorcontrib><creatorcontrib>He, Qiang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhai, Junhai</au><au>Zhang, Sufang</au><au>Chen, Junfen</au><au>He, Qiang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Autoencoder and Its Various Variants</atitle><btitle>2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</btitle><stitle>SMC</stitle><date>2018-10</date><risdate>2018</risdate><spage>415</spage><epage>419</epage><pages>415-419</pages><eissn>2577-1655</eissn><eisbn>1538666502</eisbn><eisbn>9781538666500</eisbn><coden>IEEPAD</coden><abstract>The concept of autoencoder was originally proposed by LeCun in 1987, early works on autoencoder were used for dimensionality reduction or feature learning. Recently, with the popularity of deep learning research, autoencoder has been brought to the forefront of generative modeling. Many variants of autoencoder have been proposed by different researchers and have been successfully applied in many fields, such as computer vision, speech recognition and natural language processing. In this paper, we present a comprehensive survey on autoencoder and its various variants. Furthermore, we also present the lineage of the surveyed autoencoders. This paper can provide researchers engaged in related works with very valuable help.</abstract><pub>IEEE</pub><doi>10.1109/SMC.2018.00080</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2577-1655
ispartof 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2018, p.415-419
issn 2577-1655
language eng
recordid cdi_ieee_primary_8616075
source IEEE Xplore All Conference Series
subjects autoencoder
Computational modeling
Data models
decoder
Decoding
deep learning
feature learning
Gallium nitride
Generative adversarial networks
generative model
Mathematical model
Training
title Autoencoder and Its Various Variants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Autoencoder%20and%20Its%20Various%20Variants&rft.btitle=2018%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics%20(SMC)&rft.au=Zhai,%20Junhai&rft.date=2018-10&rft.spage=415&rft.epage=419&rft.pages=415-419&rft.eissn=2577-1655&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SMC.2018.00080&rft.eisbn=1538666502&rft.eisbn_list=9781538666500&rft_dat=%3Cieee_CHZPO%3E8616075%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c220t-be81b20f00d2355d0fe32dab774d24a678fcb828b7839db6844013854d1d5d713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8616075&rfr_iscdi=true