Loading…

An Ultra-Wideband Reflective Phase Gradient Metasurface Using Pancharatnam-Berry Phase

Designing a transmissive and reflective phase gradient metasurface (PGM) using Pancharatnam-Berry (PB) geometrical phase must be based on an appropriate metasurface, which can realize circular-polarization (CP)-conversion transmission and CP-maintaining reflection, respectively. When an appropriate...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.13317-13325
Main Authors: Lin, Baoqin, Guo, Jianxin, Lv, Lintao, Liu, Zhe, Ji, Xiang, Wu, Jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Designing a transmissive and reflective phase gradient metasurface (PGM) using Pancharatnam-Berry (PB) geometrical phase must be based on an appropriate metasurface, which can realize circular-polarization (CP)-conversion transmission and CP-maintaining reflection, respectively. When an appropriate metasurface is proposed, a PGM can be easily constructed by gradually rotating the anisotropic or chiral resonators in different unit cells. In this paper, to design an ultra-wideband reflective PGM, first, an ultra-wideband CP-maintaining metasurface is proposed, and the numerical simulation results show that the proposed metasurface can realize CP-maintaining reflection at CP incidence between 8.43 and 26.93 GHz; in addition, a PB phase will be generated in its co-polarized reflection coefficient by rotating the anisotropic resonators in its unit cells. Thus, based on the metasurface, an ultra-wideband PGM is constructed successfully, the simulated and experimental results show that the PGM can realize ultra-wideband anomalous reflection at arbitrarily polarized incidence, and almost all the reflected waves at right-handed and left-handed CP (RHCP and LHCP) incidences will both be deflected to an anomalous direction; in addition, the reflected waves at linear and elliptical polarized (LP and EP) incidences will be separated into two beams for the LP and EP waves that can both be decomposed into a pair of RHCP and LHCP waves. Furthermore, finally, a detailed theoretical analysis is presented for the CP-maintaining reflection of the proposed metasurface.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2894133